Welcome to OIT

Table of Contents

User's Guide
To assist you in navigating the 2011-12 General Catalog, we have organized its contents into nine major areas. We have added a general content description of each area. The index at the end of this catalog can help in locating specific information. The general catalog is printed annually and available on the Web at www.oit.edu.

Welcome to OIT... 3
General Information; Non-Discrimination Policy; Students with Disabilities; Alternate Format; Accreditation; Mission and Objectives; Welcome to OIT; Academic Calendar; Oregon Institute of Technology; Essential Learning Outcomes; Degree Programs; History at a Glance; Campus Map

Admissions and Financial Aid...11
Office of Admissions; Application and Admission Procedures; Financial Aid Programs; Application Process and Priority Deadlines; Residency; Western Undergraduate Exchange; Reciprocity Agreements; Tuition and Fees

Academic Programs ...23
Klamath Falls; Portland; OIT–Seattle, Washington; OIT at Chemeketa Community College; La Grande–ODS College of Dental Sciences; Distance Education; Youth Programs

Academic Policies and Procedures...29
Procedures and Regulations; Advanced Standing; Catalog of Graduation; Grading System; Graduation; General Education Requirements

University Departments and Programs..41
Allied Health Partnerships; Civil Engineering; Communication; Computer Systems Engineering Technology; Dental Hygiene; Electrical Engineering and Renewable Energy; Geomatics; Humanities and Social Sciences; Management; Manufacturing and Mechanical Engineering and Technology; Mathematics; Medical Imaging; Natural Sciences; Nursing; Physical Education and Health Education; Polysomnographic Technology; Respiratory Care

Graduate Programs ... 121
Graduate Admissions and Academic Policies

Course Descriptions .. 125
Summary descriptions of courses offered by OIT

University Services ...197
Registrar's Office; Academic Agreements; Athletics; Bookstore; Affirmative Action and Equal Opportunity; Assessment; Campus Dining; Career Services; College Union; Counseling; Disability Services; Document Resource Center; Geo-Heat Center; Information Technology; Klamath Community Television; Library; Mail Center; Media Center; Oregon Renewable Energy Center; Marketing and Communication; Small Business Development Center; Student Affairs; Center for Learning and Teaching; Housing and Residence Life; Integrated Student Heath Center; Tech Opportunities; Student Development; Student Media; University Advancement; Veterans Services

Directories ..211
Listing of Governance and Advisory Boards; Administrative Offices; Administration; Faculty; Faculty Senate Presidents; Emeritus Faculty and Administration; Index
General Information

The OIT Admissions Office is located on the first floor of the College Union on the Klamath Falls campus. It is open weekdays from 8 a.m. to 5 p.m. to serve prospective students, applicants and their families, as well as high school guidance counselors, college-transfer advisors and teachers.

If you are interested in seeing the Klamath Falls campus, the Admissions Office’s visit coordinator can arrange for you to meet with a faculty member and an admissions counselor, tour the residence hall and the rest of the campus, sit in on a class and/or talk with one of our coaches. To set up a campus visit, call (800) 422-2017 or (541) 885-1150. Hearing-impaired persons may call the TTY number: (541) 885-1072. You also can request a campus visit at www.oit.edu or by e-mailing oit@oit.edu. If you wish to visit one of OIT’s other campuses, the Admissions Office can provide you with a contact person who can make arrangements for you.

Non-Discrimination Policy
Oregon Institute of Technology does not discriminate on the basis of race, color, ethnicity, national origin, gender, disability, age, religion, marital status, sexual orientation or gender identity in its programs and activities.

The following person is designated to handle inquiries and complaints regarding this non-discrimination policy: Affirmative Action Officer, OIT, 3201 Campus Dr., Klamath Falls, OR 97601-8801; (541) 885-1108; FAX (541) 851-5200; e-mail: ron.mccutcheon@oit.edu.

Students with Disabilities
Oregon Institute of Technology is committed to accommodating the academic and programmatic needs of qualified students with disabilities. Students with disabilities who anticipate needing accommodations should contact Services for Students with Disabilities, LRC 223, as soon as possible in advance of enrollment, to ensure timely provision of services. Questions may be directed to: Services for Students with Disabilities, OIT, 3201 Campus Dr., Klamath Falls, OR 97601-8801. (541) 885-1129; e-mail: joan.loustalet@oit.edu.

Alternate Format
This publication is available in an alternate format for persons with disabilities. Please contact Services for Students with Disabilities at (541) 885-1129 or joan.loustalet@oit.edu.

Accreditation
Oregon Institute of Technology is accredited by the Northwest Commission on Colleges and Universities (NWCCU), 8060 165th Avenue, N.E., Suite 100, Redmond, WA 98052-3981. NWCCU is an institutional accrediting body recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education. Accreditation, licensure or approval of individual programs are listed in departmental sections. Copies of accreditation documents are available in the Office of the Vice President for Academic Affairs/Provost, OIT, 3201 Campus Dr., Klamath Falls, OR 97601-8801.

General Catalog Production
The 2011-12 General Catalog was produced by the Marketing and Communication Department, Gwen Raubolt, Director; and the Registrar’s Office, Wendy Pedersen, University Registrar and Crystal Pound, Registration Specialist; typesetting by Susun Cooper, Rocky Ridge Specialties. Information in this catalog was accurate at the time of publication, but is subject to change without notice and does not constitute a contract between OIT and the student or applicant. The general catalog is printed annually and available on the Web at www.oit.edu.
President’s Welcome

Welcome to the OIT Family. You are embarking upon one of the most exciting educational opportunities available during a time of profound change in our society.

Our locations in Klamath Falls, La Grande, Portland, and Seattle are home to numerous student groups and organized activities. Everyone at Oregon Tech is proud of our students’ accomplishments. Equally important, we are small enough to allow students and faculty to really get to know each other. Each student will find a specific niche and welcoming environment at Oregon Tech.

Student success is our highest priority and is measured in a variety of ways: our impressive placement rates, starting salaries, and how well the university rates on graduate satisfaction surveys conducted regularly by the Oregon University System. We consistently rise to the top in the state university system, and about 92 percent of graduates recently reported their overall Oregon Tech experience as either “excellent” or “good.”

Our tagline, “Hands-on education for real-world achievement,” is more than a slogan – it truly is the way we do business. Our low student-to-faculty ratio of 20:1 allows for consistent, personal interactions between faculty and students. Faculty members bring their knowledge of industry into the classroom, and Oregon Tech students have myriad opportunities to gain real-world experience through externships, internships, cooperative programs, and capstone projects. Our applied approach to education is the main reason so many employers seek Oregon Tech alumni.

In choosing Oregon Tech, you have made a decision about your education and your future that we know will be filled with learning, success, satisfaction, and a lifelong connection to the university. And as glad as we all are that you chose Oregon Tech to continue your education, I do look forward to handing you a diploma and following your successes, throughout your post-Oregon Tech career. Again, welcome to the Oregon Tech Family – we’re glad you’re here!

Best wishes,
Chris Maples

OIT Mission Statement and Core Values

Mission Statement
Oregon Institute of Technology, a member of the Oregon University System, offers innovative and rigorous applied degree programs in the areas of engineering, engineering technologies, health technologies, management, and the arts and sciences. To foster student and graduate success, the university provides an intimate, hands-on learning environment, focusing on application of theory to practice. Oregon Tech offers statewide educational opportunities for the emerging needs of Oregon’s citizens and provides information and technical expertise to state, national and international constituents.

Core Values
Oregon Institute of Technology:
• Offers a student-centered environment.
• Provides high quality education.
• Maintains a climate of integrity and professionalism among faculty, staff, and students.
• Maintains a culture of participatory decision making among faculty, staff and students.
• Is committed to public service.
• Promotes environmental responsibility.
• Values relationships with alumni.

This statement of mission and the core values for OIT was approved by the State Board of Higher Education on January 7, 2011.
Academic Calendar 2011-12

Fall Term, 2011
- **MAY 9-19**: Registration for Fall Term
- **SEP 22-23**: Registration for those not registered in advance (new freshmen, new transfer students, and new non-admitted students and re-enrolling students)
- **SEP 23-25**: New student orientation
- **SEP 26**: Classes begin
- **SEP 26-OCT 7**: Fee payment
- **SEP 30**: Last day to use Web for Student for all registration changes
- **OCT 7**: Last day to pay fees or register without late charge
- **OCT 7**: Last day to drop without a "W"*
- **NOV 7-18**: Registration for Winter Term
- **NOV 11**: Veterans Day holiday
- **NOV 14**: Last day for course withdraw*
- **NOV 23 (1:00 p.m.)–NOV 27**: Thanksgiving holiday
- **DEC 2**: Last day to completely withdraw from the University
- **DEC 5-8**: Last day to completely withdraw from the University
- **DEC 9**: Final exams week
- **DEC 9**: Fall Term ends

Winter Term, 2012
- **NOV 7-18, 2011**: Registration for Winter Term
- **JAN 2**: New Year’s holiday
- **JAN 9**: Classes begin
- **JAN 9**: Fee payment
- **JAN 13**: Last day to use Web for Student for all registration changes
- **JAN 16**: Martin Luther King, Jr. holiday
- **JAN 20**: Last day to pay fees or register without late charge
- **JAN 20**: Last day to drop without a “W”*
- **FEB 20-MAR 1**: Registration for Spring Term
- **FEB 24**: Last day for course withdraw*
- **MAR 16**: Last day to completely withdraw from the University
- **MAR 19-22**: Final exams week
- **MAR 23**: Winter Term ends

Spring Term, 2012
- **FEB 20-MAR 1**: Registration for Spring Term
- **APR 2**: Registration and orientation for new students
- **APR 2**: Classes begin
- **APR 2-APR 13**: Fee payment
- **APR 6**: Last day to use Web for Student for all registration changes
- **APR 13**: Last day to pay fees or register without late charge
- **APR 13**: Last day to drop without a “W”*
- **MAY 7**: Registration for Summer Term for all students begins
- **MAY 14-24**: Registration for Summer Term
- **MAY 18**: Last day for course withdraw*
- **MAY 28**: Memorial Day holiday
- **JUN 8**: Last day to completely withdraw from the University
- **JUN 11-14**: Final exams week
- **JUN 15**: Spring Term ends
- **JUN 16**: Commencement

Summer Term, 2012 (8-week session)
- **MAY 7**: Registration for all students begins
- **JUN 25**: Classes begin
- **AUG 17**: Summer Term ends

First 4-week Session
- **JUN 25**: Classes begin
- **JUL 20**: First 4-week Session ends

Second 4-week Session
- **JUL 23**: Classes begin
- **AUG 17**: Second 4-week Session ends

*Instructor and advisor permission required after the fifth day of classes.

Additional calendars can be viewed at: www.oit.edu.
Clinical Laboratory Science Program

Academic Calendar 2011-2012

Summer Term, 2011 (8-week session)
JUN 20.. Classes begin
JUN 24.. Last day to pay fees without late charge
JUL 4.. Independence Day holiday
JUL 29.. Last day to drop without a “W”
AUG 12.. Summer Term ends
AUG 22.. Externships begin
SEP 5.. Labor Day holiday
DEC 12.. Graduation for 5th Term Students

Fall Term, 2011
AUG 22.. Externships for 5th Term Students begin
SEP 14.. Mandatory Orientation for Entering 1st Term Students
SEP 17.. Classes begin for Entering 1st Term Students
OCT 7.. Last day to pay fees without late charge
NOV 11.. Veterans Day holiday
NOV 11.. Last day to drop without a “W”
NOV 11-NOV 25.. Thanksgiving holiday
DEC 9.. Fall Term ends – 1st and 5th Term Students
DEC 12.. Graduation for 5th Term Students

Winter Term, 2012
JAN 9.. Classes begin
JAN 13.. Last day to pay fees without late charge
JAN 16.. Martin Luther King, Jr. holiday
FEB 17.. Last day to drop without a “W”
MAR 23.. Winter Term ends

Spring Term, 2012
APR 2.. Classes begin
APR 4.. Last day to pay fees without late charge
MAY 11.. Last day to drop without a “W”
MAY 28.. Memorial Day holiday
JUN 15.. Spring Term ends

Summer Term, 2012 (8-week session)
JUN 19.. Classes begin
JUN 29.. Last day to pay fees without late charge
JUL 4.. Independence Day holiday
JUL 27.. Last day to drop without a “W”
AUG 10.. Summer Term ends
AUG 20.. Externships begin
SEP 3.. Labor Day holiday
Oregon Institute of Technology

Oregon Institute of Technology is Oregon’s only public institution of higher education with a mission to deliver technology education throughout the Pacific Northwest. We partner with business and industry leaders to ensure our programs adapt to new technologies and workforce demands. This real-world focus gives our students a competitive edge: 95 percent are employed or in graduate school within six months of graduation. Many have offers before graduation. Year after year, our baccalaureate graduates earn excellent starting salaries.

Our applied approach to teaching, which blends theory and practice, is the main reason our alumni are so avidly recruited. Whether they study software engineering, vascular technology, management or dental hygiene, OIT students have amazing opportunities to apply what they learn in lab-based classes, clinics, externships and workplaces. This practical focus is reinforced in the classroom by instructors who come to OIT with relevant business, industrial or clinical experience.

And in every program, major studies are underscored by a general-education core that broadens students’ understanding of the world and teaches them to communicate effectively, solve problems and think for themselves.

At OIT, students find a robust university atmosphere personalized by individual interactions with professors and staff. An enrollment of about 3,500 allows for an intimate campus environment distinguished by small classes and a student-to-faculty ratio of 20:1. This personal approach provides many benefits of a prestigious private education at a public price. Specific learning communities and seminars are in place to smooth the transition to college life and to promote students’ academic and personal success.

OIT, a public, state-supported institution belonging to the Oregon University System, is accredited by the Northwest Commission on Colleges and Universities. Individual programs also are accredited by the appropriate professional organizations.

One OIT, many locations

OIT is one institution with many locations. Established in 1947, OIT offers degree programs at our main campus in Klamath Falls, four Portland locations, in partnership with the Oregon Dental Service Companies and Eastern Oregon University in La Grande, and in partnership with The Boeing Company in Seattle. We also offer online programs through the Distance Education department.

Most OIT classes are taught at our main campus in Klamath Falls. Nested on the eastern slope of the Cascade Mountains, the 190-acre campus offers spectacular views of Upper Klamath Lake, pine-studded knobs and snow-capped peaks from nearly every building. Klamath Falls, a city of about 20,000 residents (45,000 in the urban growth area), is located in south-central Oregon, about 20 miles from the California border. Known as Oregon’s “City of Sunshine,” Klamath Falls enjoys about 300 days of blue skies each year. The region offers a variety of dramatic and varied landscapes to be enjoyed by everyone—whether whitewater rafting on the Klamath River, spelunking at Lava Beds National Monument, visiting seven National Wildlife Preserves or magnificent Crater Lake. Superlative spots for fishing, golf, skiing, hiking, backpacking and horseback riding are just minutes from campus along the Volcanic Legacy Scenic Byway. Entertainment activities and venues abound: neighborhood parks, ice skating, bowling, a skatepark, coffee houses, restaurants and a 10-screen movie theater all add enjoyment to the relaxed pace of Klamath Falls life. Those more drawn to cultural pursuits will find art galleries, museums, a symphony orchestra and the top-rated Ross Ragland Theater, showcasing national and regional acts as well as community productions. The Oregon Shakespeare Festival and the Britt Festival offer world-class seasonal entertainment just 90 minutes away.

By contrast, Portland is the metropolitan center of Oregon, located at the north end of the state. At a population of about 575,000 (about 2 million in the metropolitan area), typical amenities of city life abound, surrounded by the region’s lush beauty. A bustling local scene, an eco-friendly light rail system, parks, galleries, nightlife and much more make Portland appealing to locals and visitors alike.
Essential Learning Outcomes for OIT Students

OIT students will demonstrate these institutional student learning outcomes:

- Effective oral, written and visual communication
- The ability to work effectively in teams and/or groups
- An understanding of professionalism and ethical practice
- Critical thinking and problem solving
- Lifelong and independent learning skills
- Mathematical knowledge and skills
- Scientific knowledge and skills in scientific reasoning
- Cultural awareness

Degree Programs

Master of Science
- Civil Engineering
- Manufacturing Engineering Technology
- Renewable Energy Engineering

Bachelor of Applied Science
- Technology and Management (pending approval)

Bachelor of Science
- Allied Health Management
- Applied Mathematics
- Applied Psychology
- Biology
- Civil Engineering
- Clinical Laboratory Science
 (joint degree with OHSU)
- Communication Studies
- Computer Engineering Technology
- Dental Hygiene
- Diagnostic Medical Sonography
- Echocardiography
- Electrical Engineering
- Electronics Engineering Technology
- Embedded Systems Engineering Technology
- Environmental Sciences
- Geomatics, with options in:
 - Geographic Information Systems
 - Surveying
- Health Sciences
- Information Technology, with options in:
 - Accounting
 - Applications Development
 - Business/Systems Analysis
 - Health Informatics
- Management, with options in:
 - Accounting
 - Entrepreneurship/Small Business Management
 - Marketing
- Manufacturing Engineering Technology
- Mechanical Engineering
- Mechanical Engineering Technology
- Nuclear Medicine Technology
- Nursing (through OHSU, School of Nursing)
- Operations Management
- Radiologic Science
- Renewable Energy Engineering
- Respiratory Care
- Software Engineering Technology
- Vascular Technology

Associate Degrees

Associate of Applied Science
- Dental Hygiene
- Emergency Medical Technology–Paramedic (joint degree with OHSU)
- Polysomnographic Technology

Associate of Engineering
- Computer Engineering Technology
- Software Engineering Technology

* Please see page 23 for a list of degrees offered on each of our campuses.
History at a Glance

July 14, 1947 – Under the direction of Winston Purvine, the first classes were held in a deactivated World War II Marine Corps hospital three miles northeast of Klamath Falls.

1951 – KTEC radio went on the air.

1953 – Associate degree programs in the Surveying and Structural Engineering Technologies were first accredited by the Engineers’ Council for Professional Development.

1956 – KOTI television opened on campus.

1957 – The institute made a separate division of the State Board of Education and an engineering study was begun to determine whether to repair or rebuild the facilities.

1960 – The institute was transferred to the jurisdiction of the State Board of Higher Education.

1962 – The institute was accredited by the Northwest Association of Secondary and Higher Schools.

1964 – The campus moved to newly constructed buildings on a geothermal site overlooking Upper Klamath Lake.

1966 – The institute received authorization to grant bachelor’s degrees.

1970 – Bachelor’s degree programs first accredited by ABET.

1975 – Geo-Heat Center established.

1976 – Kenneth Light appointed President upon Purvine’s retirement.

1983 – Larry Blake appointed President and the Metro Center was established in Portland.

1984 – Small Business Development Center established.

1988 – Portland Metro Center moved to its first permanent facilities on Southeast Harmony Road near Clackamas Town Center.

1989 – State Board authorized OIT to grant master degrees.

1991 – Lawrence J. Wolf appointed President.

1995 – Master’s degree first offered.

1998 – Martha Anne Dow appointed President.

2001 – Oregon Renewable Energy Center established.

2005 – Oregon Center for Health Professions established.

2008 – Christopher G. Maples appointed President.

Campus Map

1. Snell Hall
 Administrative Offices, Alumni Relations, Cashier, Human Resources, Oregon Tech Foundation, Registrar
2. College Union
 Admissions, ASOIT, Bookstore, Financial Aid, Campus Dining, Information, Meeting Rooms, Post Office, Student Affairs
3. Residence Hall
4. Athletics
 Gymnasium, Pool, Fitness Center
5. Learning Resource Center
 Career Services, Center for Learning and Teaching, Counseling and Testing, Library, Media Services, Offices, Shaw Historical Library, Television Studio
6. Owens Hall
 Classrooms, Laboratories, Offices
7. Semon Hall
 Classrooms, Dental Clinic, Laboratories, Offices, Student Health Center
8. Boivin Hall
 Classrooms, Computing Services, Geo-Heat Center, Offices, Small Business Development Center
9. Purvine Hall
 Classrooms, Laboratories, Offices
10. Cornett Hall
 Classrooms, Laboratories, Offices
11. John F. Moehl Stadium and Track Facility
12. Facilities Services
 Central Receiving
13. Information Center
 Disabled Parking Information, Temporary and Visitor Parking Permits, Campus Security
14. Commons
15. Martha Anne Dow Center for Health Professions
 Classrooms, Laboratories, Offices
16. Miller Hall
17. Sustainable Village 1
18. Sustainable Village 2
19. Sustainable Village 3

Designated Parking Areas
A. Residence Hall Lot
B. Residence Hall Lot
C. Snell Hall Lot
D. Information Booth Lot
E. Purvine Hall Lot
F1. Cornett West Lot
F2. Cornett West Lot (gravel)
G. Cornett North Lot
H. Cornett North Lot
I. Cornett North Annex
J. Facilities Services Lot
K. Learning Resources Center Lot
L. College Union East Lot
M. College Union North Lot
N. Tech Fit Lot
O. Stadium Lot (gravel)
Admissions and Financial Aid
Office of Admissions

Ginny Gardiner, Director of Admissions
Bettina Burns, Assistant Director of Admissions
Lee Raubolt, Operations Manager
Stephanie Hanson, Campus Visit Coordinator

The OIT Admissions Office is located on the first floor of the College Union on the Klamath Falls campus. Open weekdays from 8 a.m. to 5 p.m., its primary functions are to help prospective students investigate and evaluate OIT, to manage applications for admission and to assist applicants with the enrollment process. The Admissions Office operates with the cooperation and support of the entire campus community.

Admissions welcomes visiting students and their families to daily tours, and sessions with admissions counselors, coaches, and other staff. OIT also hosts several Campus Preview events annually. For Campus Preview dates or to register online for a visit or Campus Preview, go to www.oit.edu/visit or call 541-885-1150 or 800-422-2017. To visit OIT Portland, call 503-821-1250. Hearing impaired persons may call the TTY number at 541-885-1072.

Admission requirements apply to all applicants of Oregon Institute of Technology. All students who wish to enroll in more than eight credits in a term, receive financial aid and/or graduate from OIT must apply and be accepted for admission. Applications for general admission (excluding programs requiring specialized admission) are processed on the main campus in Klamath Falls regardless of the campus location for the student.

Applications

The priority application deadline for maximum scholarship and financial aid consideration each fall term is February 1. OIT accepts applications on a rolling basis, but students must have a complete application on file in Admissions three weeks prior to the first day of classes as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadlines</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Term</td>
<td>September 5, 2011</td>
<td>2011-2012</td>
</tr>
<tr>
<td>Winter Term</td>
<td>December 19, 2011</td>
<td>2011-2012</td>
</tr>
<tr>
<td>Spring Term</td>
<td>March 12, 2012</td>
<td>2011-2012</td>
</tr>
<tr>
<td>Summer Term</td>
<td>June 4, 2012</td>
<td>2011-2012</td>
</tr>
</tbody>
</table>

Applications for admission are available online at www.oit.edu/apply. Contact Admissions to receive a paper application. Distance Education online degree programs at OIT require a specialized application available at www.oit.edu/distance-education. A complete application consists of an application for admission, official transcripts, test scores, and other required documentation depending on the type of applicant (see Admission Eligibility Requirements).

Students who were previously admitted, but never enrolled, and students who want to re-enroll after skipping four or more terms, must submit a Re-Enrolling & Update Application Form. Students who have not yet registered for classes may change their entry term, a major or a campus location by completing the Application Change Form online. Students who wish to enroll as non-degree seeking students in no more than eight credits per term may submit a Non-Admit Application form; however students must be fully admitted to qualify for financial aid. These forms are available online at www.oit.edu/applications.
International students must complete the International Student Application. Students seeking enrollment through an approved exchange program must complete the International Exchange Application. Both are available online at www.oit.edu/international.

The MS-Manufacturing Technology and the following majors require a secondary application process after students are granted general admission and after students meet the eligibility requirements of the program. Each program has its own deadlines, admission requirements and processes which are outlined in the departmental pages of this catalog.

Clinical Laboratory Science (OHSU/Portland)
Diagnostic Medical Sonography
Dental Hygiene (Salem, La Grande, Klamath Falls and online)
Echocardiography
Nuclear Medicine Technology
Nursing (with OHSU/Klamath Falls)
Paramedic/EMT (OHSU/Portland)
Radiologic Science
Renewable Energy Engineering
Respiratory Care
Vascular Technology

Application Procedures
Every applicant must complete the following steps:

1. Complete the appropriate Application for Admission (www.oit.edu/applications).
2. Submit the $50 non-refundable application fee. Checks or money orders should be made payable to OIT. Students who qualify may opt to defer the application fee until enrollment in classes. OUS Application Fee Deferred Forms are available at www.oit.edu/applications.
3. Applicants who have earned fewer than 36 college credits must have official SAT I or ACT scores sent to OIT. Some applicants who graduated from high school three or more years ago may be exempted from this requirement by permission of the Admissions Director.
4. Have official transcripts from all post-secondary institutions that you attended, or received credit from, sent directly to the OIT Admissions Office. Any offer of admission is contingent upon the submission of satisfactory final transcripts prior to enrollment at OIT.
5. Have official high school transcripts or GED test results sent directly to the OIT Admissions Office. High School records are not required from applicants who graduated prior to 1997 and who have earned at least 36 college credits. Applicants who are currently enrolled in high school may be admitted on the basis of six or more semesters of high school work provided that they will have met the 14 subject requirements at the time of high school graduation. In any case, each student's final official high school transcript must be provided upon graduation to complete the admission process.
6. Have official Advanced Placement (AP) or International Baccalaureate (IB) score reports sent to the OIT Admissions Office, if applicable.

Some programs at OIT do not have sufficient space to enroll all qualified applicants who seek admission. In these cases, OIT reserves the right to offer admission to the most qualified applicants, on a first-come, first-served basis or through a combination of the two strategies.

Upon admission and prior to registration, a completed health form showing evidence of adequate immunizations must be on file with OIT’s Student Health Center. For further information, see the Student Health Center section of this catalog. Students are not required to submit these forms if taking fewer than six credits per term.

If a student fails to submit the required documents in complete and satisfactory order, admission and registration may be cancelled. All records become the property of OIT.

Social Security Number Disclosure and Consent Statement
Students are requested to provide voluntarily a Social Security Number (SSN) to assist OIT and the Oregon University System (and organizations conducting studies for or on behalf of OUS) in developing, validating or administering predictive tests and assessments; administering student aid programs; improving instruction; internal identification of students; student parking; collection of student debts; or comparing student educational experiences with subsequent workforce experiences. When conducting studies, OUS will disclose a student’s Social Security Number only in a manner that does not permit personal identification by individuals other than representatives of OUS (or the organization conducting the study for OUS) and only if the information is destroyed when no longer needed for the purposes for which the study was conducted. By providing your Social Security Number, students consent to the uses identified above. This request is made pursuant to ORS 351.070 and 351.085. Provision of a Social Security Number and consent to its use is not required and, if a student chooses so, will not be denied any right, benefit or privilege provided by law. Students may revoke consent for the use of a Social Security Number in these ways at any time by writing to: Office of the Registrar, OIT, 3201 Campus Dr., Klamath Falls, OR 97601.

However, OIT is required to obtain a Social Security Number in order to file certain returns with the Internal Revenue Service (IRS) and to furnish a statement to you. The returns that OIT must file contain information about qualified tuition and related expenses. Privacy Act Notice: Section 6109 of the Internal Revenue Code requires students to give a correct SSN to persons who must file information returns with the IRS to report certain information. The IRS uses the SSN for identification purposes and to help verify the accuracy of tax returns. For more information, refer to IRS code 6050S.
Admission Requirements

Freshman Admission

Academic performance is not the sole criterion for admission. OIT may evaluate a person’s behavior and background to determine their ability to maintain the standards of academic and professional conduct expected at the university. An evaluation may take into consideration current behavior and performance as well as past experiences and actions. Simply qualifying for admission does not guarantee admission.

For freshman admission, students must meet entrance requirements adopted by the State Board of Higher Education in Oregon. Applicants who are enrolled in or who have graduated from regionally accredited high schools must:

1. Submit an official high school transcript. An unweighted cumulative high school grade point average of 3.00 is required for admission. Applicants with a GPA between 2.50 and 2.99 may qualify for admission provided they submit adequate SAT Reasoning Exam scores or ACT scores.

2. Submit results from either the SAT Reasoning Exam, SAT I or ACT. Applicants may submit scores from SAT I or ACT tests taken prior to March 2005; but applicants taking the tests after that time must also submit results from the SAT Writing test or the optional ACT Writing exam.
 a. Applicants with an unweighted cumulative high school grade point average of 3.00 or better must take the SAT or ACT and have official scores submitted to OIT; but there is no minimum SAT or ACT score.
 b. Applicants with an unweighted GPA of 2.75 to 2.99 must submit combined SAT Reasoning Exam scores of 800 or better on the Critical Reading (formerly called Verbal) and Math tests with a score of at least 400 on the Math portion of the SAT. Those submitting ACT results must have an ACT Math score of at least 21 and a Composite score of at least 21.

3. Applicants must satisfactorily (with grades of C- or above) complete at least 14 units (one year is equal to one unit) of college preparatory work in the following areas, unless they graduated from high school prior to spring 1985.
 a. English (4 units). Shall include the study of the English language, literature, speaking and listening, and writing, with emphasis on and frequent practice in writing expository prose during all four years.
 b. Mathematics (3 units required, 4 strongly recommended). Shall include first-year algebra and two additional years of college preparatory mathematics such as geometry, probability and statistics, trigonometry, finite mathematics, advanced applications, calculus, and probability and statistics, or courses that integrate topics from two or more of these areas. This coursework must include Algebra II (or equivalent) or higher level mathematics. Algebra and geometry taken prior to ninth grade will be accepted.
 c. Science (2 units required, 3 recommended). Shall include a year each in two fields of college preparatory science such as biology, chemistry, physics, or earth and physical science. It is strongly recommended that at least one year be taken as a laboratory science. Beginning Fall 2012 three (3) units of Science will be required to include two inquiry-based college preparatory science disciplines and a third of the student’s choosing. It is strongly recommended that one year be taken as a laboratory science.
 d. Social Studies (3 units). Shall include analysis of societal issues and events. It is strongly recommended that study includes knowledge and use of geographic information, patterns of United States history, patterns of human history, structures, systems of U.S. Government, and analysis of economic systems.
 e. Foreign Language (2 units). Students graduating from high school in 1997 or later are required to have completed two years of the same foreign language at the high school level with a grade of C- or above. A student may also meet this requirement by taking two quarters or semesters of the same foreign language at the community college or university level. Demonstrated proficiency in an American Indian language can meet all or part of the second language requirement as certified by the governing body of any federally recognized tribe. American Sign Language is acceptable in meeting the foreign language requirement. The language requirement may also be met by satisfactory performance on an approved assessment of foreign language knowledge and/or proficiency. For details on how to satisfy the requirement via knowledge assessment or proficiency, contact the Admissions Office. Those who graduated prior to 1997 are exempt from the foreign language requirement. Applicants who are admitted by exception, without having met the Second Language requirement, must satisfactorily complete at least two terms of study in a second language prior to graduation from OIT.

Applicants who are unable to meet the 14 subject requirements may be eligible for admission by earning a minimum score of 470 or above (940 total) on each of two College Board SAT Subject Tests (in Math level I or IIC and another test of the student’s choice). Students who do not take a SAT Subject test in a second language must prove language proficiency through another approved process.

Applicants who have not graduated from high school and who are applying on the basis of GED scores must submit test results showing a minimum composite score of 580 (58 on GED exams administered prior to 2002) with a minimum score of 410 on each GED subtest (41 on subtests administered prior to 2002). GED applicants must meet the Foreign Language requirement.
Applicants whose GED scores fall below these standards may qualify on the basis of a combination of GED and SAT Reasoning or ACT exam results:

1. Applicants with GED composite scores of 550 to 570 (55 to 57 on tests administered before 2002) need to submit combined SAT Reasoning Exam scores of 800 or better on the Critical Reading (formerly called Verbal) and Math tests with a score of at least 400 on the Math portion of the SAT. Those submitting ACT results must have an ACT Math score of at least 17 and a Composite score of at least 17.

2. Applicants with GED composite scores of 500 to 540 (50 to 54 on tests administered before 2002) need to submit combined SAT Reasoning Exam scores of 1000 or better on the Critical Reading (formerly called Verbal) and Math tests with a score of at least 500 on the Math portion of the SAT. Those submitting ACT results must have an ACT Math score of at least 21 and a Composite score of at least 21.

Public high school students must graduate from a standard or regionally accredited high school. Private high school students must graduate from regionally accredited high schools. Home-schooled students and graduates of unaccredited or non-standard high schools, as well as applicants who fail to meet the 14 subject requirements, may be admitted by submitting SAT Reasoning Exam score of 1000 on the Math and Critical Reasoning sections combined and 470 on the Writing test or an ACT composite score of 21 or better and a minimum score of 470 or above (940 total) on each of two College Board SAT Subject Tests (Math level I or IIC and another test of the student’s choice). An examination in a second language is strongly recommended to qualify the applicant for admission by meeting the language proficiency requirements. Students who do not take an SAT Subject test in a second language must prove language proficiency through another approved process.

Transfer Admission
A transfer student is one who has previously earned credits at another regionally accredited institution of higher education. A student must have earned at least 36 college-level credit hours (24 semester credits) to be admitted on the basis of his/her college record alone.

- Transfer applicants must have a cumulative 2.25 GPA or better in college level classes unless they hold an Oregon Transfer Module (OTM) or an associate or bachelor’s degree already, in which case, only a cumulative GPA of 2.0 is required.
- In order to be admitted to OIT, transfer applicants must demonstrate proficiency in English and Math by completing the equivalent of Math 95 Intermediate Algebra (or higher) and WRI 115 Introduction to Writing (or higher) with grades of “C-“ or better.
- Transfer applicants must have completed two terms of a college-level second language with a grade of C- or above, or two years of the same high school-level second language with an average grade of C- or above, or satisfactory performance on an approved second language assessment of proficiency. Demonstrated proficiency in an American Indiana language can meet all or part of the second language requirement, as certified by the governing body of any federally recognized tribe. American Sign Language meets the second language requirement. The second language requirement applies to transfer applicants graduating from high school in 1997 after.
- Applicants who do not have an OTM, Associate or Bachelor’s degree must have at least 33 college-level credits that are not in Physical Education. If more than 10 percent of an applicant’s credits are in Physical Education, those credits in excess of 10 percent may not be calculated in his or her cumulative college GPA.
- Applicants must be eligible to re-enroll in the previous institution attended.

Official transcripts from all postsecondary institutions must be submitted for consideration. Applicants who graduated from high school after 1996 must also submit official high school transcripts, unless they have completed two terms of college-level study in a second language.

Students who have earned between 12 and 36 quarter hours of college-level work must meet both freshman and transfer requirements. Students who have completed fewer than 12 transferable quart credits (8 semester) must meet freshman admission requirements. Admission will be based on both high school and postsecondary records.

A Transfer Evaluation Report acknowledging the courses accepted by the university will be sent after admission status has been confirmed. Acceptance of vocational/technical courses may be granted after registration if the student’s administering department finds that vocational/technical courses have satisfied certain bachelor’s degree requirements. In all cases, course and/or department prerequisites will be enforced.

Transfer Articulation Agreements
Oregon Institute of Technology is dedicated to enhancing partnerships with regional community colleges. One important way of doing this is by forming articulation agreements. An articulation agreement is an officially approved agreement that matches coursework between schools. These agreements are designed to help students make a seamless transition when transferring to OIT. Articulation agreements give students a clear understanding of what courses will transfer to OIT and satisfy requirements for their major while minimizing overlap or repeat of courses. Some agreements accept an associate degree in its entirety while other agreements outline specific courses to take as a student plans for transfer. Students should inform the Admissions Office and their academic department advisor when they are utilizing an articulation agreement.

A list of articulation agreements can be found online at www.oit.edu/articulations; students may search by OIT major or by...
transfer institution. Questions regarding these agreements may be directed to the students’ academic department or the Office of Academic Agreements.

Non-Admit Students
A non-admit is a student who wishes to take less than nine credit hours per term at OIT, is not seeking a degree from OIT and has never been fully admitted to OIT in the past. A non-admit is not eligible for financial aid. College-level classes taken while in non-admit status may be used toward OIT graduation requirements upon completion of the full admission process or may be transferred to other institutions. Enrollment as a non-admit student does not guarantee future admission to OIT. To enroll at OIT as a non-admit, submit the Non-Admit Application Form (www.oit.edu/applications) to the Admissions Office, at least one week prior to enrollment. OIT reserves the right to deny enrollment to those who seek non-admit status.

Admission to Programs

Having Clinical or Practicum Requirements
It is important that prospective students understand that admission to those programs that have clinical or practicum requirements:

1. Is selective;
2. Will be granted after consideration of an applicant’s ability to assume professional responsibility for clients, patients or students served by the program; and
3. May be denied to any student with a record of past criminal behavior or psychiatric illness, which bears upon the student’s ability to fulfill clinical or practicum responsibilities.

Students seeking admission to online degree completion programs in Radiologic Science, Vascular Technology, Echocardiography, Diagnostic Medical Sonography, or Respiratory Care, must meet all regular admission requirements and be registered professionals working in their chosen field. This will assure access to clinical sites as required in these programs. For more information, contact the Distance Education Office.

International Student Admission
OIT welcomes international students as applicants and as vital members of its campus community.

In applying for admission, send the following to the Admissions Office:

1. An International Student Application for Admission accompanied by a $50 (U.S.) non-refundable fee.
2. Official transcripts, in English or with an accompanying official translation, of all high school and post-high school institutions attended.
3. Official test scores on the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System exam (IELTS). A minimum score of 520 paper-based TOEFL, 190 computer-based TOEFL, 68 Internet-based TOEFL or 6 IELTS is required for consideration.
4. A completed Statement of Financial Responsibility form, indicating that you have the necessary financial resources in U.S. dollars to support yourself while enrolled.
5. A letter, if appropriate, from parents and/or sponsors indicating the amount of financial support they will provide in U.S. dollars.
6. Documentation showing that you, your parents and/or your sponsors have adequate financial resources to meet your expenses while enrolled at OIT. Examples include official bank statements, tax forms and letters of employment showing annual earnings.
7. Documentation showing that you, your parents and/or your sponsors have adequate financial resources to meet your expenses while enrolled at OIT. Examples include official bank statements, tax forms and letters of employment showing annual earnings.
8. Documentation showing that you, your parents and/or your sponsors have adequate financial resources to meet your expenses while enrolled at OIT. Examples include official bank statements, tax forms and letters of employment showing annual earnings.
9. Documentation showing that you, your parents and/or your sponsors have adequate financial resources to meet your expenses while enrolled at OIT. Examples include official bank statements, tax forms and letters of employment showing annual earnings.
10. Documentation showing that you, your parents and/or your sponsors have adequate financial resources to meet your expenses while enrolled at OIT. Examples include official bank statements, tax forms and letters of employment showing annual earnings.

A completed health history and immunization form must be submitted. In addition to the health requirements that need to be fulfilled before registration (refer to Integrated Student Health Center section of this catalog for health history and immunization requirements), international students must have at least one documented MMR vaccine on file at the Integrated Student Health Center prior to the student attending any classes (per OAR 333-050-0130). Also, students from countries identified as high risk for tuberculosis (most countries in Latin America and the Caribbean, Africa, Asia, Eastern Europe and Russia) are required to complete a TB screening upon entrance to OIT. This may include a TB skin test and/or a chest x-ray. This can be done at the Integrated Student Health Center if records are not available.

Exchange Student Admission
OIT welcomes exchange students through multiple exchange partnership agreements. Students at partner institutions work with an advisor at their “home” campus to meet the requirements of OIT’s international exchange application process. It is recommended that exchange students begin the exchange application process at least nine months prior to the planned date of entry. This allows ample time for submission of documents that the U.S. Bureau of Citizenship and Immigration Services requires OIT to collect before we can issue the I-20 form that is used to secure an F-1 visa.

Admission Exceptions
The Admissions Committee and Director of Admissions retain the right to make exceptions to the specified requirements for Admission or add stipulations to certain offers of admission. For additional information, contact the Director of Admissions.

Admissions with Special Conditions
Institutions are authorized to admit a quota of freshmen totaling no more than five percent of the institution’s first-time freshman class for the previous academic year as exceptions to the stated admission requirements. To qualify for five percent special admission, applicants are considered on a case-by-case basis. Transfer applicants are also granted special admission on a case-by-case basis in accordance with OIT’s transfer admission policy.
ROAD (Registration, Opportunity and Discovery)
Registration for new students occurs prior to the start of each term. All students who are new to the Klamath Falls campus must attend ROAD to register for classes. In addition to placement testing and meeting with advisors to plan an academic schedule, students have the opportunity during ROAD to register for classes, set up OIT computer and e-mail accounts, receive a university ID card and learn more about making a successful transition to OIT. Students are encouraged to attend an early ROAD event rather than waiting to register at the beginning of term. Visit www.oit.edu/road or contact CFLAT, OIT’s Center for Learning and Teaching at (541) 885-1791 or cflat@oit.edu for more information.

Placement Testing
OIT’s Center for Learning and Teaching (CFLAT) administers all placement testing for OIT students. Student admission records are examined to determine placement requirements. Students transferring in math credit for calculus or beyond, or who have transferred in math credits to fulfill all of the math requirements for their major, are exempt from the math placement requirement. Transfer students with more than 36 transferrable college credits are exempt from the reading placement requirement. Students transferring in college-level writing are exempt from the writing placement requirement. Entering students in health programs requiring Human Anatomy and Physiology with transferrable college credit for this course are exempt from the entry assessment for the Human Anatomy and Physiology course sequence. Placement tests are available prior to the term of entry and in conjunction with new student registration (ROAD). Visit www.oit.edu/road or contact CFLAT at (541) 885-1791 or cflat@oit.edu for more information.

Financial Aid Programs and Application Process
Tracey Lehman, Director
College Union, 1st Floor
(541) 885-1280
dollars@oit.edu

The Financial Aid Office is committed to providing high-quality service to all students, their families and the community. As part of that commitment, the office strives to provide information that is accurate, easy to understand and enables students to make decisions regarding educational funding.

The information contained in this catalog is general in nature and is not meant to serve as notification of students’ rights and responsibilities as financial aid recipients. OIT’s Financial Aid Award Guide serves that purpose and is sent to all new students. It is also available on our Web site at www.oit.edu/aid. Additional questions regarding the application process should be directed to the Financial Aid Office.

Federal law mandates that all students applying for financial aid complete the Free Application for Federal Student Aid (FAFSA) available at www.fafsa.ed.gov. A federally approved needs-analysis methodology is applied consistently to information provided by all applicants. The philosophy behind financial aid is that parents and students have the primary financial responsibility for funding the student’s education.

If there are unusual financial circumstances that are not accurately reflected on the FAFSA, the student should contact the Financial Aid Office. Under certain conditions, professional judgment may be used and aid eligibility recalculated. The Financial Aid Office will always take the student’s best interest into consideration while, at the same time, upholding federal regulations.

Application Procedures/Priority Deadlines
All students applying for federal and state aid must complete the Free Application for Federal Student Aid (FAFSA) and list OIT’s school code (003211). We encourage you to file as soon after January 1st as possible to be considered for your maximum eligibility. Some funds are very limited and are expended early.

Once the FAFSA information is received and reviewed by the Financial Aid Office, new students will receive a letter instructing them on how to log into Web for Student to view their award letter online. Students may accept their aid online and request changes. The Financial Aid award guide is located on our website at www.oit.edu/aid. It is important that you read the guide and follow the instructions on the letter you are sent. Any updates to award letters will result in an email to the OIT student email account. Returning students receive an email to their OIT email account when their award letter is ready to view online. If additional information is requested, such as tax returns, students should return the documents as soon as possible to receive an Offer of Financial Aid. The award letter will list all types of aid for which the student is eligible. The Award Guide is a detailed booklet explaining programs, disbursement procedures and student rights and responsibilities, as well as cost estimates and other miscellaneous information. It is the student’s responsibility as a financial aid recipient to become familiar with the contents of the Award Guide and contact the Financial Aid Office if additional questions or concerns arise. Additionally, students should check their OIT e-mail accounts for announcements and notifications from Financial Aid.

The FAFSA must be filed for each year a student wishes to be considered for financial aid eligibility.

Types of Aid
All federal and state programs are need-based with the exception of the Unsubsidized Stafford Loan and the Parent Loan for
Undergraduate Students (PLUS). Students receiving federal aid are allowed to receive at maximum the cost of attendance as determined by the Financial Aid Office through all aid programs, including outside benefits such as Voc Rehab and other third-party payments. Individual financial-aid packages will vary based on determined cost of attendance, expected family contributions and outside resources.

Federal Pell Grants
The estimated maximum annual Pell Grant for 2011-12 is $5,550. At the time of printing, federal funding has not been finalized. Students may receive Pell Grants as long as they are attending at least half time (6 credits), but the grant will be prorated accordingly. Pell Grant eligibility is limited to those students who have not yet obtained a bachelor’s degree. All students will be considered for Pell Grant eligibility if they file a FAFSA. Awards are granted based on the federally calculated expected family contribution (EFC).

Oregon Opportunity Grant
The maximum annual Oregon Opportunity Grant for 2011-12 ranges from $400–$1,900. This grant program provides funds to Oregon resident undergraduate students attending Oregon schools. The Oregon Opportunity Grant has a shared responsibility model. Students not enrolled full time (at least 12 credits) may be eligible for a part-time award if attending half time. By filing a FAFSA, students are applying for this grant. Funds are available on a first-come, first-served basis and are generally available to those who qualify. A student can receive an Oregon Opportunity Grant for a maximum of 12 terms. More information is available at www.getcollegefunds.org.

Federal Supplemental Educational Opportunity Grants (SEOG)
SEOG funds are very limited at OIT. Although priority for SEOG funds is given to full-time students, OIT may, on a case-by-case basis, award SEOG funds to students enrolled at least half time. The typical award is $300 for an academic year. Only students who have not yet completed a bachelor’s degree and are eligible to receive a Pell Grant will be considered for this grant.

Federal Perkins Loan
The Federal Perkins Loan Program has no origination or guarantee fees, a nine-month grace period after a student ceases to be enrolled at least half time before repayment begins and an interest rate of five percent that begins at repayment. Awards at OIT range from $1,000 to $4,000 per year and are based on need. Priority is given to students who are attending full time, but may also be awarded on a case-by-case basis to students attending part time.

Oregon Institute of Technology

Estimated Budgets for 2011-12 (as of March, 2011)

<table>
<thead>
<tr>
<th></th>
<th>Resident On Campus</th>
<th>Resident Off Campus</th>
<th>Resident With Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$5,526</td>
<td>$5,526</td>
<td>$5,526</td>
</tr>
<tr>
<td>Fees</td>
<td>$1,536</td>
<td>$1,536</td>
<td>$1,536</td>
</tr>
<tr>
<td>Room and Board</td>
<td>$8,400</td>
<td>$8,307</td>
<td>$2,469</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$2,526</td>
<td>$2,526</td>
<td>$2,526</td>
</tr>
<tr>
<td>Total</td>
<td>$19,088</td>
<td>$18,995</td>
<td>$13,157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-Resident On Campus</th>
<th>Non-Resident Off Campus</th>
<th>Non-Resident With Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$17,940</td>
<td>$17,940</td>
<td>$17,940</td>
</tr>
<tr>
<td>Fees</td>
<td>$1,536</td>
<td>$1,536</td>
<td>$1,536</td>
</tr>
<tr>
<td>Room and Board</td>
<td>$8,400</td>
<td>$8,307</td>
<td>$2,469</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$2,927</td>
<td>$2,927</td>
<td>$2,927</td>
</tr>
<tr>
<td>Total</td>
<td>$31,903</td>
<td>$31,810</td>
<td>$31,810</td>
</tr>
</tbody>
</table>

- Tuition is based on 13 credits, 2011-12 carrying load.
- Fees based on full time enrollment.
- Budget is based on $498 per month rent, $271 per month food and $163 per month utilities for off-campus students.
- Miscellaneous expenses include medical supplies, entertainment, personal care products, housekeeping supplies, travel and transportation.
- CLS/PAR, RCP and Dental Hygiene/La Grande have a different budget. Please consult the Oregon University System fee book.
- A one-time matriculation fee is assessed first-term students.
- MIT externs have a different budget which includes increased costs for major medical insurance, internet and additional credits.
- A single parent may double the budgeted housing figures with documentation.
- Students enrolled in health professions majors have higher fees. Students may request actual fees to be added to budgets by the Financial Aid Office.
- Budget increase for computer is $1,500 maximum with documentation.
- Please visit www.ous.edu/factreport/tuition for the most current information.
in the Career Services Office and on the OIT Web site. Awards are usually $1,500 per year, which can be earned at any time during the academic year provided the student is enrolled at least half time.

Direct Lending
Federal Stafford Loans (subsidized and unsubsidized) are available to most students through the federal government Direct Loan Program. Loan amounts vary based on student need and grade level in a declared major at OIT. A guaranteed and origination fee may be taken at the time of disbursement. Contact the OIT Financial Aid Office for most recent interest rates for loans. The difference between a subsidized and an unsubsidized loan is that the federal government pays the interest on subsidized loans while the student is in school and during the six-month grace period. Students who wish to borrow through the unsubsidized loan program should remember that interest is accruing on the loan. Interest payments can be made while in school and during the grace period, but are not required. Any interest that has accrued at the time of repayment will be capitalized. Students must fill out a promissory note before funds will be disbursed available at: www.dl.ed.gov/borrower/BorrowerWelcomePage.jsp and complete entrance counseling.

Matthews Loan, Matthews Supplemental Loan and OIT Long Term Loan
The Matthews Loan, Matthews Supplemental Loan and OIT Long Term Loan are loans offered by Oregon Institute of Technology. These loans have a 5 percent interest rate, no origination fees and repayment begins six months after students cease to be enrolled at least half-time.

Students must complete a promissory note on loan to receive the funds.

Federal Parent Loans for Undergraduate Students (PLUS)
Parents of dependent students can apply for funds through PLUS. Loans are available for up to the cost of attendance minus other financial aid and resources each year. Interest begins to accrue immediately. Like the student loan, a four percent origination and guarantee fee may be taken at the time of each disbursement, but repayment begins 60 days after the final disbursement of the academic year. Parents may request interest payents only while the student is in school at least half time. For 2011-12, PLUS will be through the Direct Loan Program.

Presidential Scholarships
First-time freshman applicants and transfers will receive consideration for Presidential Scholarships by applying and being accepted for admission by Feb. 1 for the following fall term and meeting the minimum scholarship requirements. Transfer students qualify on the basis of their college GPA. These scholarships are for full-time students only and may be renewed for up to four years. Award levels vary depending on each recipient’s academic record. For more information, call the Admissions Office at (541) 885-1150 or write to oit@oit.edu.

Klamath County Recognition Scholarship
The Klamath County Recognition Scholarship is automatically awarded to any applicant living in Klamath County who will attend OIT starting the fall term after graduation from high school and who is able to meet two of three criteria: an unweighted high school cumulative GPA of 3.0 or better; top 25 percent rank in class; and/or a composite SAT I score of at least 1,000 (21 ACT). To qualify, students must simply apply for admission, meet all admission requirements and be accepted for admission by Feb. 1 for enrollment fall term. Recipients must be new full-time undergraduate students at OIT. This scholarship is valued at $1000 and is NOT renewable.

Oregon Tech Foundation Scholarships
More than 150 new and returning students annually receive scholarships from the more than 100 scholarships administered by the Oregon Tech Foundation. Alumni, businesses, industry, and friends of OIT generously fund these scholarships. To receive consideration, students must be currently enrolled at OIT or accepted for admission for the following fall term, and must submit an application. Application forms and deadlines are available on the OIT Web site at www.oit.edu/otfscholars. The online scholarship application process is seamless for students and automatically generates a list of scholarships the student is eligible to apply for. The application process opens Dec. 1 and has a deadline of Feb. 1. For more information about scholarship opportunities, please visit www.oit.edu/otfscholars.

Leadership and Diversity Scholarships (LAD)
To be considered for the LAD Scholarship, students must submit the scholarship application (available from the Admissions Office) and the required essay. Students also should provide at least one letter of recommendation from a teacher, counselor, clergy or other appropriate reference. Candidates must be current OIT students or have been accepted for admission for the following fall term and submit all scholarship materials by Feb. 1. Scholarship materials should be directed to the Admissions Office. For more information, call (541) 885-1150.

Estimated Financial-Aid Budgets for 2011-12 Academic Year
Financial-aid budgets can include amounts for tuition and fees, books and supplies, room and board and miscellaneous expenses. Please remember that these are estimated average costs for students, and student spending habits will vary. On a very limited, case-by-case basis, the Financial Aid Office may be able to adjust a student’s budget as permitted by federal regulations.

Students With Disabilities
Under certain circumstances, a student’s aid package may be adjusted to reflect additional expenses. Please contact the Financial Aid Office if you would like additional information or to schedule an appointment.

Consortium Agreement Information
In some cases OIT’s Financial Aid Office will process a paper consortium agreement with another school in order to allow a stu-
dent taking courses at another institution to receive aid from one school for all eligible classes. The school must be one that OIT does not have a dual admit program with. The institution that will be awarding the degree and awarding financial aid is defined as the “home institution”; the “host institution” is defined as the institution from which the student is taking additional courses.

When OIT is serving as the “home institution,” the following criteria must be met to have classes at a “host institution” apply toward financial aid:

1. The student must be fully admitted to one of OIT’s degree-granting programs and eligible for financial aid.
2. The student must be enrolled at least half-time (6 credits) at OIT.
3. The classes taken at the host institution must be 100-level or higher.
4. The classes at the host institution must apply toward the student’s OIT degree.
5. The classes taken at the host institution must not be offered by OIT during the term of enrollment.

It is the student’s responsibility to ensure that both the “host” and the “home” institutions complete the appropriate consortium agreement. Consortium-agreement forms are available at www.oit.edu/aid under “forms.” Students must provide OIT’s Financial Aid Office with a final grade report from the “host institution” prior to receiving aid for future terms.

Dual Admitted Students
OIT has formal dual admit partnerships with a handful of community colleges within the state. Please go on line to http://www.

Western Undergraduate Exchange

Students enrolled in some of OIT’s majors are eligible for the Western Undergraduate Exchange (WUE) program. WUE can save students from the Western United States thousands of tuition dollars each year. Students from Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, North Dakota, South Dakota, Utah, Washington and Wyoming are eligible. Students from these states who apply for WUE-eligible majors pay just 150 percent of the in-state tuition.

Eligible Programs
All majors in the College of Health, Arts and Sciences except:
 • Clinical Laboratory Science
 • Dental Hygiene and pre-Dental Hygiene
 • Medical Imaging Technology and pre-Medical Imaging Technology
 • Nursing after acceptance by Oregon Health Sciences University
All majors in the College of Engineering, Technology and Management except:
 • Renewable Energy Engineering and pre-Renewable Energy Engineering

WUE is not offered for the OIT Distance Education programs. WUE students are ineligible for the Presidential Academic Scholarship, although WUE offers the greater savings for non-resident students.

WUE Requirements
WUE tuition rates are available for a maximum of 12 quarters at OIT. To maintain eligibility you must:
• Remain continuously enrolled throughout fall, winter and spring of the academic year. Summer enrollment at OIT is not required to maintain eligibility.
• Enroll in at least 12 credits per term and maintain Satisfactory Academic Standing. Students who are simultaneously admitted to OIT and a community college to allow dual enrollment must take at least 9 credits per term from OIT with a combined total of 12 credits per term. GPA and completed credits are monitored each academic year.
• Students wishing to ‘stop-out’ of enrollment for a term must submit a written request to the Office of the Registrar before the start of that term. Requests are granted at the discretion of the university.
Students who are dual admitted may be able to combine credits at both schools for full time enrollment. It OIT is the home school (giving aid) student must be enrolled in six credits at OIT. Enrollment information and grade information will be transmitted electronically. Credits at the host school need to be applicable to the OIT degree.

Residency
In Oregon, as in all other states, tuition at publicly supported four-year universities is higher for nonresident students than for resident students.

The rules used in determining residency seek to ensure that only bona fide Oregon residents are assessed the resident fee. Please see www.oit.edu/registrar for the latest version of the residency policy.

Reciprocity Agreements
Students from some Northern California counties may be eligible to attend OIT under reciprocity agreements with College of the Siskiyous, College of the Redwoods and Shasta College. Reciprocity can allow selected students to attend OIT at in-state tuition rates. To find out if the community college in your area participates in these reciprocity agreements, contact its Admissions Office directly for further instructions.

Each participating college has certain restrictions, which may include the county of the student’s residence, required enrollment for a period of time first at the community college, the student’s major and how many reciprocity permits the college issues.

Tuition and Fees
Snell Hall, 201
(541) 885-1235

Fees and deposits in all Oregon state institutions of higher education are charged according to a uniform plan, varying on different campuses according to differences in conditions or nature of coursework offered. The State Board of Higher Education reserves the right to make changes in fee schedules without notice.

Below are listed the estimated fees paid by students regularly enrolled for undergraduate and graduate study. Payment of full-time fees entitles students to use the library, ride the local Basin Transit Service buses, laboratory equipment and materials in courses in which they are registered. Students may receive medical attention from the Student Health Center, use the fitness center (Tech Fit Center) and other student services. No reduction in fees is made for students who do not wish to access these services.

The estimated fee schedule for the 2011-12 academic years is provided for planning purposes only. Fees are subject to change. The current fee schedule is available from the Business Office, Registrar’s Office or on the university’s Web site.

Special Fees
All special fees are subject to change without notice.

Application Fee (Not refundable)—$50
Must accompany admission application.

Matriculation Fee (Not refundable)—$150
A one-time fee assessed to all new and transfer students.

Petition to Graduate Fee—$50

Late Fee Payment—$99
Students paying fees after scheduled payment dates of any term pay a late charge of $99 on the third Monday of the term.

Late Fee to Add, Drop or Withdraw—$20

Return-of-Check Fee—$25
If institutional charges are met by a check which is returned because of any irregularity for which the student is responsible, a fine will be charged. The late-registration fee will be added to the returned-check charge where the returned check was used to pay tuition and fees.

Special Examination Fee, per credit—$50
Examination for credit.

Transcripts
One-time fee assessed during first term of attendance—$40
Official Transcripts are issued at no charge. Special Mailing Fee—$35.

Allied Health Curriculum Tuition
Tuition is assessed an additional 15 percent for courses specific to the Allied Health curriculums.

Special Course Fees, per course
Special fees, in addition to regular tuition, are assigned for some courses. These fees are noted in the Schedule of Classes for each term.

Room and Board Costs
The 2011-12 estimated annual room-and-board costs range from $7,495 to $9,695, depending on room type and amount of food purchased. Room-and-board charges are assessed by the term. Fees are due in accordance with the same fee payment schedule as exists for tuition. Generally, payments are due during the first week of the term.
Senior Citizen Instruction Fee
Per-credit hour: no charge.

Senior citizens are persons age 65 or older. Such persons are authorized to attend classes on a space-available basis. Charges for special materials, if any, are additional. Incidental fee privileges are not provided.

The senior-citizen privilege is extended to persons auditing classes (not seeking credit or working toward a degree).

Tuition and Fee Refunds
Students who withdraw from the university and who have complied with the regulations governing academic withdrawals may be entitled to certain refunds of fees assessed, depending on the time of withdrawal. The refund schedule has been established by the State Board of Higher Education and is on file in the Business Office. Included with the refund schedule is the mandated order in which financial aid must be returned to the appropriate programs for students on financial aid. All refunds are subject to the following regulations:

1. Any claim for refund must be made in writing before the close of the term in which the claim originated.
2. An official notice of withdrawal must be completed and necessary clearance signatures filed with the Registrar’s Office.
3. Refunds in all cases are calculated from the date of receipt of the application for refund or date of withdrawal, and not from the date when the student ceased attending classes, except in unusual cases when formal withdrawal has been delayed through cause beyond the student’s control.

Parking Fees
All student, staff and faculty vehicles must be registered with the Traffic Commission and operated in compliance with Regulations Governing Traffic Control. At the time of vehicle registration, a parking fee will be assessed in accordance with a schedule approved by the State Board of Higher Education and filed with the Secretary of State. Parking permits may be purchased at the Cashier’s Office. Vehicles must be registered by the first day after classes begin. Parking Fees for 2011-12 are:

<table>
<thead>
<tr>
<th>Students</th>
<th>Faculty/Staff</th>
<th>Permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$130/year</td>
<td>$130/year</td>
<td>Additional vehicle $10</td>
</tr>
<tr>
<td>$ 65/term</td>
<td>$ 65/term</td>
<td>on term and full-year permits</td>
</tr>
</tbody>
</table>

Library Fines and Charges
The following regulations govern library fines and charges:

1. Books—A fine of 25 cents per day is charged for each item overdue other than reserve books. No charges are made for the first three days late, but a charge of $1 is assessed on the fourth day, plus 25 cents per day thereafter (maximum, $10 each item). Separate charges apply to books borrowed from other libraries.
2. Periodicals—Magazines and newspapers have a $1-per-day charge for each overdue item up to the maximum overdue fine.
3. Reserved books—The following fines will be charged for violation of rules governing reserve books and other restricted materials: For overdue items, 25 cents for the first hour and 25 cents for each succeeding hour, or portion thereof, until the material is returned or reported lost. In case of flagrant rule violation, a charge of $1 per hour may be assessed, but in no case will a fine of more than $10 be assessed.
4. Recalls—Materials needed for use in the library are subject to recall at any time. A maximum fine of $1 per day may be imposed for failure to return promptly.
5. Billing—Borrowers failing to return materials within 40 days of the due date will be charged the replacement cost of the items plus the amount of fine (maximum fine—$10 each item) incurred up to the time the item is reported missing. In addition, the borrower will be assessed a service charge of $10.
6. Refunds—When a lost item for which the borrower has been billed is returned before replacement has been ordered, a refund not exceeding the replacement cost may be made at the discretion of the librarian. In cases where replacement has been ordered, no refunds to the borrower will be made.
Academic Programs
Degree Programs

Klamath Falls

Master of Science
Civil Engineering
Manufacturing Engineering Technology

Bachelor of Applied Science
Technology and Management (pending approval)

Bachelor of Science
Allied Health Management
Applied Mathematics
Applied Psychology
Biology
Civil Engineering
Communication Studies
Computer Engineering Technology
Dental Hygiene
Diagnostic Medical Sonography
Electrocardiography
Electrical Engineering
Embedded Systems Engineering Technology
Environmental Sciences
Geomatics, with options in:
Geographic Information Systems
Surveying
Health Sciences
Information Technology, with options in:
Accounting
Applications Development
Business/Systems Analysis
Health Informatics
Management, with options in:
Accounting
Entrepreneurship/Small Business
Management
Marketing
Manufacturing Engineering Technology
Mechanical Engineering
Mechanical Engineering Technology
Nuclear Medicine Technology
Nursing (through OHSU School of Nursing)
Operations Management
Radiologic Science
Renewable Energy Engineering
Respiratory Care
Software Engineering Technology
Vascular Technology

Associate Degrees
Associate of Applied Science
Polysomnographic Technology
Associate of Engineering
Computer Engineering Technology
Software Engineering Technology

Minors
Applied Mathematics
Biology
Business
Geographic Information Systems
Human Communication
Information Technology
International Business
International Relations
Psychology
Technical Communication

Specializations
Accounting
Entrepreneurship/Small Business
Management
Marketing
Picture Archiving and Communication Systems (PACS)

Certificates
Accounting (post baccalaureate)
Dispute Resolution
Polysomnographic Technology

Portland

Master of Science
Manufacturing Engineering Technology
Renewable Energy Engineering

Bachelor of Applied Science
Technology and Management (pending approval)

Bachelor of Science (degree completion)
Clinical Laboratory Science (joint degree with OHSU)
Electronics Engineering Technology
Embedded Systems Engineering Technology
Information Technology, with options in:
Applications Development
Business/Systems Analysis
Health Informatics
Manufacturing Engineering Technology
Mechanical Engineering Technology
Operations Management
Renewable Energy Engineering
Software Engineering Technology

Associate of Applied Science
Emergency Medical Technology–Paramedic (joint degree with OHSU)

Minors
(See advisor for a list of available minors.)

Online

Master of Science
Manufacturing Engineering Technology

Bachelor of Applied Science
Technology and Management (pending approval)

Bachelor of Science
Allied Health Management
Dental Hygiene (degree completion)
Diagnostic Medical Sonography (degree completion)
Electrocardiography (degree completion)
Information Technology with option in:
Applications Development
Operations Management
Radiologic Science (degree completion)
Respiratory Care (degree completion)
Vascular Technology (degree completion)

Associate of Applied Science
Polysomnographic Technology

Minors
Applied Psychology
Business
Information Technology

Specialization
Picture Archiving and Communication Systems
Travel and Tourism

Certificate
Polysomnographic Technology

Other Off-Site Locations

OIT–Seattle at Boeing

Master of Science
Manufacturing Engineering Technology

Bachelor of Science
Manufacturing Engineering Technology
Mechanical Engineering Technology

OIT at Chemeketa
Community College

Bachelor of Science
Dental Hygiene

La Grande (ODS College of Dental Sciences)

Associate of Applied Science
Dental Hygiene
Introduction

For more than 60 years, Oregon Institute of Technology has focused on changing the lives of Oreganians by preparing them to meet the technical and management needs of business, industry and healthcare agencies.

Today, OIT offers a menu of academic choices that features bachelor of science programs in engineering, the engineering and health technologies, management, communication and the applied sciences. These include bachelor's degree-completion programs offered online and at locations in Portland, Oregon and Seattle, Washington. OIT also offers a number of associate degree programs.

OIT is accredited by the Northwest Commission on Colleges and Universities. Additional accreditations, licensure and approvals of individual programs are listed in the appropriate program sections of this catalog. Copies of accreditation documents are available in the Office of the Vice President for Academic Affairs/Provost, Oregon Institute of Technology, 3201 Campus Dr., Klamath Falls, OR 97601-8801.

Degree Programs

Graduate Programs

A Master of Science in Manufacturing Engineering Technology is offered at OIT campuses in Portland, Klamath Falls, at The Boeing Company in Washington and online.

A Master of Science in Civil Engineering is offered at OIT’s Klamath Falls campus.

A Master of Science in Renewable Energy Engineering is offered at OIT’s Portland campus.

Undergraduate Programs

The School of Health, Arts and Sciences includes Clinical Laboratory Science, Dental Hygiene, Health Sciences, Medical Imaging Technology, Applied Psychology, Environmental Sciences, Communication Studies, Paramedic Education, Respiratory Care and Polysomnographic Technology. Nursing is offered as part of a statewide program administered by the Oregon Health & Science University. Programs in Clinical Laboratory Science and Paramedic Education are offered in Portland in conjunction with OHSU.

Medical Imaging, one of the largest bachelor's degree programs in the nation in this field, includes majors in Radiologic Science, Vascular Technology, Diagnostic Medical Sonography, Nuclear Medicine Technology and Echocardiography.

The faculty in the School of Health, Arts and Sciences includes individuals with nationally-recognized credentials and international experience. Clinical practice and externships are included in health technology education, while the arts and sciences provide exposure to liberal studies that complement technical coursework.

The School's faculty is composed of professional engineers, certified public accountants and those with corporate executive experience. From accounting to robotics, these programs include extensive laboratory time to apply the theories that are studied.

Summer Term

Anyone may enroll in summer term. Formal admission to the university is not necessary and there are no GPA or high school diploma requirements. High school students who want to take college courses are invited to attend. Potential students who have not met the college entrance requirements may take appropriate courses during the summer to correct these deficiencies. Students may register from early May through the first day of summer school. Tuition is on a per-credit basis.

The eight-week term begins in mid-June and ends in mid-August. Four-week sessions begin in mid-June and mid-July. Classes meet Monday through Thursday and are scheduled either during day or evening hours. Many summer classes are offered online via distance education.

A separate summer term class schedule is available on the Web in April. This schedule provides a listing of courses, fees, registration and housing information.
Portland Programs

Lita Colligan, Associate Vice President for Strategic Partnerships
Dick Swanson, Director of Facilities and Contracts

Professors:
Jay Bockelman, Computer Systems Engineering Technology
Lawrence Wolf, Manufacturing and Mechanical Engineering and Technology

Associate Professors:
Mateo Aboy, Electrical Engineering and Renewable Energy
Robert Bass, Electrical Engineering and Renewable Energy
Grant Kirby, Management
Slobodan Petrovic, Electrical Engineering and Renewable Energy

Assistant Professors:
Luther “Dave” Clements, Electrical Engineering and Renewable Energy
Cristina Crespo-Veiga, Electrical Engineering and Renewable Energy
Michael Kirschner, Management
Geoffrey Peter, Manufacturing and Mechanical Engineering and Technology

Frank Rytkonen, Electrical Engineering and Renewable Energy
Chad Stillinger, Electrical Engineering and Renewable Energy

OIT Portland Administrative Office and East Campus
7726 SE Harmony Rd., Portland, OR 97222
(503) 821-1250
(503) 786-5040 - fax

OIT Portland West Campus
20175 NW AmberGlen Ct, Suite 100
Beaverton, OR 97006
(503) 821-1275
(503) 533-5190 - fax

OIT Portland Web site:
www.oit.edu/portland

Opening in Fall 2012
OIT Wilsonville Campus
27500 SW Parkway Avenue
Wilsonville, OR 97070
www.oit.edu/wilsonville

OIT offers degree programs at four locations in the Portland area: the OIT Portland East Campus in Clackamas and the OIT Portland West Campus in Beaverton, as well as two joint programs with Oregon Health & Science University in the Portland region. These programs are primarily designed for working professionals who are motivated to advance in their careers. Most courses are offered on an extended-day and weekend schedule.

All OIT Portland degree programs are taught by OIT faculty and industry-experienced adjuncts in a curriculum that directly parallels the courses offered in Klamath Falls. An OIT Portland degree blends theory and real-world practice in well-equipped laboratories and project-based courses.

At OIT Portland, students can:
• Transfer up to 120 applicable credits from a community college, or other accredited college, depending on courses taken and degree desired.
• Earn up to 45 credits of “Credit for Prior Learning” through—
 a. Credit by Examination: Challenge courses where you have working knowledge of the subject.
 b. Credit by Portfolio: Demonstrate mastery of course outcomes through documentation.
 c. Military course credit through accredited evaluation.
• Enjoy small student-to-faculty ratio in the classroom.
• Expect industry-experienced faculty to teach classes, not a teaching assistant.
• Pay public tuition rates and receive full student assistance services.
• Expect to become highly desirable employees.

The Portland degree-completion programs are included under the institutional accreditation by the Northwest Commission on Colleges and Universities, the same agency that accredits all Oregon University System (OUS) institutions. All OIT engineering technology programs are accredited by ABET, Inc.

OIT Portland offers eight bachelor of science degree completion programs and one master of science program to students in the Portland Metropolitan area. OIT will begin offering a Master’s Degree in Renewable Energy Engineering in 2012.

OIT’s programs include both bachelor of science degree and professional-development programs in Electronics Engineering Technology, Operations Management, Information Technology, Manufacturing Engineering Technology, Mechanical Engineering Technology, Renewable Energy Engineering and Software Engineering Technology. All four years of the technical courses are available for Renewable Energy Engineering and Software Engineering Technology. OIT Portland’s Information Technology Program has three specializations: Systems Analysis, Applications Development and Health Informatics and classes are offered in a traditional classroom or online.

Additionally, OIT offers a bachelor’s degree in Clinical Laboratory Science and an Associate degree in Emergency Medical Technology (Paramedic) in Portland in collaboration with Oregon Health and Science University. Classes are conducted on the Oregon Health & Science University campus and at the Tualatin Valley Fire and Rescue Training Center in Sherwood. Administrative details are facilitated by the Klamath Falls Campus.

OIT also provides unique general education courses that complement a foundation of general education courses offered by community colleges and other educational institutions in the region. Generally, students complete lower division writing, communications and math courses at OIT and partner institutions in order to complete a bachelor’s degree at OIT’s Portland campuses.
All baccalaureate programs are offered in cooperation with other OUS institutions and area community colleges. Classes are held at the OIT campuses, other OUS campuses, at various community colleges and selected industrial facilities in the Portland area.

A schedule of degree-related courses for OIT Portland is published on the OIT Web site about six weeks prior to each term. Information can be obtained through the OIT Portland administrative office, (503) 821-1250, or accessed at www.oit.edu/portland.

In 2012, OIT will consolidate its four Portland area locations into a single campus in Wilsonville. Information about the Wilsonville campus can be found at www.oit.edu/wilsonville.

Educational Partnerships
OIT has developed educational partnerships to make it as easy as possible for students to transfer credits, complete their degrees and move up the career ladder. OIT has dual enrollment agreements with Portland Community College, Clackamas Community College, Chemeketa Community College, Lane Community College, Linn-Benton Community College and Mt. Hood Community College. Students may begin a bachelor’s degree program at a partner community college and complete a bachelor’s degree at OIT. Under these agreements, the student’s college transcript is automatically sent to OIT at the end of each term of enrollment. An advantage of dual enrollment is that students only need to complete one application form in order to be admitted at both institutions. The completion of a dual enrollment form allows students to authorize OIT and the community college to freely share academic information with each other, which streamlines financial aid, transcript requests and transfer evaluations. For information about dual enrollment, go to www.oit.edu/prospective-students/academic-agreements.

OIT also has articulation agreements with many community colleges that allow students to have a clear understanding of what courses will transfer to OIT and satisfy requirements for the major. Articulation agreements help students who have completed courses at community colleges or other institutions to map a career path.

Articulation Agreements and Advising Guides for each Portland-based degree program are listed on the OIT Web site: www.oit.edu/registrar/articulations.

Business Partnerships
OIT Portland’s faculty work closely with business partners and advisors to ensure that their courses integrate new technologies and are responsive to business needs for skilled professionals. Portland area businesses, such as Intel, Maxim, PCC Structural, and Oregon Cutting Systems, regularly send their best and brightest to OIT for degree completion so they can advance into engineering, technology or management positions within their organizations.

In addition, selected courses may be packaged into modules to address specific skill development needs and may be offered at times and locations that are convenient for the business customer. These short courses or workshops are available through contract and customized training in response to requests by the business community.

OIT has established an Office of Strategic Partnerships to connect businesses with university resources related to continuing education, sponsored projects and applied research.

Individual businesses or clusters of companies that are interested in university-industry partnerships are encouraged to call OIT Portland administrative office, (503) 821-1250 or the Associate Vice President for Strategic Partnerships at (503) 821-1247.

OIT–Seattle at Boeing

Vacant, Program Director

Scott Newsome, Assistant Program Director
(425) 965-9707 office
(425) 965-1514 fax
scott.newsome@oit.edu

www.oit.edu/seattle
oitseattle@oit.edu

Associate Professor: Nathan Mead

OIT offers Bachelor and Master of Science Degrees in Manufacturing Engineering Technology and a Bachelor of Science Degree in Mechanical Engineering Technology to employees of The Boeing Company at sites in the Puget Sound area. Also offered are review classes for the Society of Manufacturing Engineers’ CMfgT and CMfgE exams and a Certificate of Completion in Composites.

Distance Education

Barb DeKalb, Director

Boivin Hall, 186
(541) 885-1142
barb.dekalb@oit.edu

The primary mission of Distance Education at OIT is to offer convenient programs for degree completion and graduate education. OIT currently offers one graduate program online, the Master of Science in Manufacturing Engineering Technology. Working adults, particularly those registered or licensed in an array of health professions, may easily utilize these Web-based offerings. Currently, OIT offers degree completion programs in Diagnostic Medical Sonography, Echocardiography, Radiologic Science, Vascular Technology, Dental Hygiene, and Respiratory Care. Typically, students in these programs will start distance education from
a foundation for degree completion built on two sources:

1. Credit completed at another school that will transfer to OIT; and
2. Substantial credit granted for past experience and/or registry or licensure in their profession.

Students wishing to be admitted to Radiologic Science, Vascular Technology, Echocardiography, Diagnostic Medical Sonography, or Respiratory Care programs must meet all regular admission requirements and be registered professionals working in their chosen field. This will assure access to clinical sites as required in these programs.

Oregon Institute of Technology also offers a distance program leading to Bachelor of Science degrees in Information Technology and Operations Management. Although most of the coursework for these majors may be completed through online delivery, a handful of courses may require students to complete on-site laboratory work in Portland or Klamath Falls. Students from outside the area may complete these requirements by transferring approved courses from another college or university.

A degree in Allied Health Management is available for students who have earned licensure or registry in selected allied health fields and an associate degree.

Also offered is a Master of Science in Manufacturing Engineering Technology delivered fully online with no residency requirement.

In addition, OIT offers a Bachelor of Applied Science in Management and Technology (pending approval). This degree is designed for students with associate degrees and technological careers to improve their employment opportunities by obtaining a Bachelor’s degree.

OIT also offers a certificate program and an Associate of Applied Science degree in Polysomnographic Technology.

Additionally, Distance Education offers online courses leading to a minor in Information Technology, which can be completed in conjunction with a degree program at OIT or Eastern Oregon University; certification in Picture Archiving Communication Systems (PACS); and a bank of online general education courses open to all OIT students.

Distance education classes are offered on a 10 week quarter-based academic calendar. They are paced to keep students on track, while allowing them to complete weekly assignments at their convenience.

Youth and High School Programs

Stephanie Hansen, Coordinator, Youth Programs and Campus Visits
(541) 885-1668
www.oit.edu/programs/youth-programs

OIT’s Youth Programs offers innovative and energizing pre-college educational outreach programs designed to encourage K-12 students to pursue educational and career goals in science, technology, engineering and mathematics (STEM). The goals of our programs are to:

1. Increase understanding and interest in STEM careers among participants;
2. Build confidence in their technical abilities; and
3. Introduce them to role models and mentors.

Youth Camps

GEAR UP
A series of special programs, created in partnership with Oregon GEAR UP, to ensure that Oregon’s low-income middle school and high school students are prepared for, pursue and succeed in post-secondary education.

I’m Going To College
In partnership with NELA, this day program brings sixth-grade students to campus to expose them to college. The students attend classes, tour OIT and have lunch. A follow-up meeting with parents will be hosted by students’ elementary schools.

MATHCOUNTS
An annual competition in February that challenges students’ math skills, develops their self-confidence and rewards them for their achievements. Open to sixth-, seventh- and eighth-grade students in the Klamath Basin, this program gives students the opportunity to participate in individual and team competitions. The top students advance to the state and national levels.

Teen Women In Science (TWIST)
This residential weeklong summer program focuses on high school women. The program integrates principles of math, computer applications, and engineering. Students experience campus life and gain exposure to career choices in science and engineering. OIT celebrates 18 years of bringing TWIST to young women.

Summer programs include: Amazing Games, DayDreamer, and LEGO Beginners and LEGO Challenge. For information on these programs, please visit: www.oit.edu/programs/youth-programs.

High School Programs for College Credit

Brandy Brown, Articulation and Dual Credit Coordinator
(541) 885-1844

Advance Credit Program
The Advance Credit Program (ACP) is a partnership between Oregon Institute of Technology and the participating high school to offer qualified high school students the opportunity to receive college credit from OIT. OIT is partnered with more than 20 high schools and offers more than 15 introductory college courses. The Advance Credit Program consists of college courses taught in the high schools by college-level qualified high school instructors. These courses are offered as part of the regular high school curriculum with the option of registering for college credit from OIT. ACP gives students the opportunity to try college-level courses, gain valuable skills, and develop study habits for college.
High School Transition Program
The High School Transition Program (HST) at Oregon Institute of Technology gives qualified high school students the opportunity to come to the Klamath Falls campus and take a college course for OIT credit. Students must be 14 years or older and are typically eligible to take 100- and 200-level courses. High school students must register through the High School Transition Office.

The ACP and HST Programs allow OIT to reduce the normal tuition fee by a considerable amount. Cost to the participating high school student is $25 per credit.
Academic Policies and Procedures

Procedures and Regulations

Student Responsibility
Students are responsible for knowing and understanding Oregon Institute of Technology’s requirements relating to registration, academic standards, student activities and student organizations. A partial view of academic regulations is included in the class schedule introduction pages on OIT’s Web site and distributed to new students during their first registration at OIT. Students are encouraged to meet regularly with their departmental advisors and to contact the Registrar’s Office with questions about academic procedures, policies or regulations.

Academic Advising
Students are assigned faculty advisors from their academic programs. Advisors maintain a file on students’ progress and help them plan course loads. If a student should change programs, a new advisor will be assigned. The student’s advising file will be transferred to and maintained by the new advisor. Degree-seeking students are required to meet with their advisors prior to registration.

Student Classification
In the Oregon University System students are classified according to the number of college-credit hours earned as follows: 0-44, freshman; 45-89, sophomore; 90-134 junior; 135 and above, senior. Transfer credits are included in determining classification.

Quarter System
Oregon Institute of Technology operates on an academic year consisting of three quarters (or terms) of approximately 10 weeks each and a summer session of eight weeks.

Academic Progress and Petitions Committee
Administration of the regulations governing academic requirements is vested in the Academic Progress and Petitions Committee. This committee also has authority to assess probation or to suspend any student from the university when it appears that the student’s work is at such a level that the student cannot benefit by continued attendance. The university requires that students make substantial progress toward meeting graduation requirements, including maintaining a minimum 2.0 GPA. Any cumulative GPA below 2.0 is considered unsatisfactory and will bring the student’s record under review.

The Academic Progress and Petitions Committee also serves as an advisory group to the Registrar’s Office regarding academic appeals. For information regarding appeals to this committee, students may contact the Registrar’s Office.

Admissions with Special Conditions
If a student is admitted with one or more stipulations and fails to meet any of the prescribed condition(s), that student may be referred to the Academic Progress & Petitions (AP&P) Committee for possible academic disciplinary action, up to and including probation and suspension from the university. The request for review by AP&P can be made by any member of the Admission Committee.

Academic Warning
An academic warning is a caution to the student that there is a lack of satisfactory academic progress. Students, including first term freshmen, who do not achieve a 2.0 in any given term will receive an Academic Warning. Students who have no earned credits, withdrawals (W) and/or incompletes (I), for two consecutive terms will also receive an Academic Warning.

Academic Probation
Students who have attempted two or more terms at OIT and have an OIT cumulative GPA below 2.0 will be placed on Academic Probation. Students who have no earned credits, (i.e., all Fs, withdrawals (W) and/or incompletes (I)), for three or more consecu-
tive terms will also be placed on Academic Probation.

Students placed on probation will receive notification that they are on Academic Probation as well as instructions on how to proceed. Once placed on probation, students are advised to limit their course load to 13 credits.

Academic Suspension

Students on academic probation for one term who do not meet the 2.0 cumulative GPA requirement in the successive term of enrollment will be placed on Academic Suspension for at least one term. To reenroll, a student must complete the prescribed procedures and appeal to the Academic Progress and Petitions Committee for reinstatement. Students should contact the Registrar’s Office for reenrollment information. Students who have been suspended are denied all privileges of the institution.

Note: When a student is placed on academic warning, probation or suspension both the student and their advisor will be notified.

Advanced Standing

Credit for Prior Learning

Credit for prior learning by a student admitted to OIT may be granted through a number of independent processes. These include: A) Transfer Credit; B) Military Credit; C) College Level Examination Programs (CLEP) and Advanced Placement credit (AP); D) Credit for National Registry or Licensure Exams; E) Credit by Examination; and F) Credit for Prior Experiential Learning. A number of these categories are for credit that is awarded for educational accomplishments attained outside of accredited post-secondary institutions.

These procedures describe the process used to grant the student appropriate academic credit by each of these methods as follows.

A. Transfer Credit

OIT makes every effort to give maximum consideration to the transfer work presented by enrolling students. To ensure that the student has the requisite knowledge, OIT follows these policies in determining credit:

Accreditation Status of Institution

The institution where the transfer credit was earned must be accredited by an accrediting body recognized by the Council for Higher Education (CHEA).

Students transferring work from an institution that is not accredited by a CHEA-recognized accrediting body may receive transfer credit by 1) demonstrating prior experiential learning with a portfolio, 2) applying for credit after demonstrating competencies in advanced coursework in the same subject area or 3) challenging courses by exam.

International Institutions

Students seeking transfer credit from international institutions must provide OIT with a credential evaluation from an OIT-approved credential evaluation service. Credential evaluation information may be obtained from the Office of Admissions. The credential evaluation must include course titles, credits and grades. Students must also provide course descriptions in English from the international institution. Any associated costs are the responsibility of the student.

Applicable Transcripts

Prior to the formal awarding of transfer credit, the transfer student must provide an official transcript of coursework completed at all other higher education institutions. Failure to list all colleges attended on the Application for Admission may result in denial of admission or transfer credit.

Admitted transfer students must submit official transcripts at least one term prior to enrollment to ensure timely evaluation of transfer credits.

Determination of Transfer Credit

The OIT Registrar’s Office determines the transfer equivalency of general-education courses using articulation agreements, course descriptions, course outlines, and course syllabi. The student’s major department determines the transfer equivalency for technical or major courses using similar resources.

Articulation Agreements

Oregon Institute of Technology is dedicated to enhancing partnerships with regional community colleges. One important way of doing this is by forming articulation agreements. An articulation agreement is an officially approved agreement that matches coursework between schools. These agreements are designed to help students make a seamless transition when transferring to OIT. Articulation agreements give students a clear understanding of what courses will transfer to OIT and satisfy requirements for their major with the least overlap or repeat of courses. Some agreements accept an associate degree in its entirety while other agreements outline specific courses to take as a student plans for transfer. Students should inform the Admissions Office and their academic department advisor when they are utilizing an articulation agreement.

A list of articulation agreements can be found online at www.oit.edu/articulations; students may search by OIT major or by transfer institution. Questions regarding these agreements may be directed to the students’ academic department or the Office of Academic Agreements.

Applicability of Transfer Credit

OIT provides a complete, written transfer evaluation upon the admission of the student, prior to the planned term of enrollment. The evaluation delineates the transfer credit on a course-by-course basis and specifies direct course equivalencies, courses which may be used towards general-education requirements, elective credits and courses which do not receive credit.

At the time of admission, OIT’s written transfer evaluation may include elective credits that do not apply towards a specific degree. These credits will be recorded as transfer credit for registration purposes, allowing the student an earlier registration appointment based on total earned credit hours.
Some transfer work, which may not be directly equivalent to OIT courses, may be appropriately substituted to meet OIT requirements. Students may seek course substitution approval by completing the Course Substitution form and obtaining the signature of the advisor, department chair and University Registrar.

Credit for Alternative-Delivery Courses
Courses taken by alternative delivery from other accredited institutions will be evaluated as transfer credit.

Minimum Grade Standards
OIT considers for transfer those courses that carry a grade of D or better from an accredited institution. However, many OIT departments require C or better course grades for prerequisite and graduation purposes. OIT does not normally transfer math courses with a "D" grade.

Pre-College Level Transfer Credit
OIT does not accept for transfer credit courses that are considered pre-college or vocational. OIT determines the level and nature of the course by examining the catalog description and course-numbering system of the student's prior college.

Pre-Approval of Transfer Credit
OIT students who plan to enroll at other institutions during the summer or to complete coursework for the degree in absentia are encouraged to obtain written pre-approval of transfer credit to ensure transfer equivalency for degree purposes.

B. Military Credit
OIT will grant credit for military courses and experiences based on American Council of Education (ACE) guidelines (found in the Guide to the Evaluation of Educational Experience in the Armed Forces) and faculty recommendations. Credit is awarded in accordance with transfer credit policies at OIT and the Oregon University System. Students may request evaluation of military credit by furnishing an official AARTS or SMART transcript.

C. College-Level Examination Programs and Advanced Placement:

College Level Examination Program (CLEP)
OIT will award credit for several college-level examination programs. These examinations must be completed with a satisfactory score and an original copy of test results must be forwarded to the Registrar’s Office from the testing service. In order to receive such credit, the student must be admitted to an OIT degree program and registered for classes during the term in which the request is made. OIT awards credit for College-Level Examination Program (CLEP) subject examinations, but not for CLEP general examinations. Information on CLEP course equivalencies and minimum scores may be obtained from the OIT Registrar’s Office.

Advanced Placement (AP)
Students who complete college-level work in high school under the Advanced Placement (AP) program must achieve a minimum score of three to be granted credit on their OIT transcript. AP course equivalencies may be obtained from the Office of Admissions or Registrar’s Office.

A maximum of 25 percent of the credits used toward the degree may be CLEP and AP.

International Baccalaureate
OIT evaluates IB test scores much in the same way it evaluates AP scores. Students must have official test scores sent to the Office of Admissions. OIT may award credit to students who receive a 5 or higher on any Higher Level IB examination. No credit is awarded for Subsidiary Level exams. For more information, please contact the Registrar’s Office at (541) 885-1300.

D. Credit for National Registry or Licensure Exams
OIT will award a pre-approved block of credit to fully admitted and enrolled students who have passed a national registry or licensure exam in majors offered by the institution. This award of credit is based on the academic department's annual review of the national exam questions in comparison to the curriculum taught on campus. Full information is maintained in the Registrar's Office and in the Office of Distance Education, which coordinates online degree completion programs offered by OIT.

Credit by Examination and Credit for Prior Experiential Learning
OIT awards credit for educational accomplishments attained outside of accredited postsecondary institutions.

E. Credit by Examination
Students currently enrolled at OIT may request credit for a course by special examination. This process is called a course challenge and the provisions are:

1. Credit by examination (course challenge) is available to students who are fully admitted in degree-granting programs.
2. Students may not challenge a course which they have previously taken for credit and received a grade other than an audit, nor may they challenge the same course more than once. If students register for a course they wish to challenge, they must drop and challenge the course before the last day to drop without a "W".
3. No more than 25 percent of the credits submitted for graduation may be credit by examination.
4. Credit by examination counts toward graduation residency requirements. For a bachelor's degree, students must complete 45 credits at OIT with the last 15 to be taken on campus. For the associate degree, students must complete 30 credits with the last 15 to be taken on campus.
5. Examinations receive either a “P” (pass) or “F” (fail). A pass suggests the student has mastered the material comparable to a grade of “C” or better in the course being challenged. The University Registrar records “P” grades on the student transcript, but does not count the P in grade-point-average calculations. The University Registrar does not record “F” grades.
6. Students must pay a non-refundable per-credit fee, as published by the Office of Business Affairs, prior to the examination.
7. Departments are responsible for preparing an appropriate examination, evaluating the student’s response and submitting results to the Registrar’s Office. Departments reserve the right to declare any course offering as non-challengeable. Further procedures and general guidelines for course challenges may be obtained from the Registrar’s Office.

F. Credit for Prior Experiential Learning
Oregon Institute of Technology recognizes that students learn outside the classroom through experiences on the job, vocational education, professional development courses, workshops, and independent study. OIT may grant credit for experiential learning when it is judged to be equivalent to college-level courses in the OIT curriculum. This process is only appropriate for students who wish to demonstrate learning for more than one required course. Typically, credit for experiential learning will replace a series of major specific courses.

Level of Credit
OIT grants credit for prior experiential learning at the undergraduate level only. Credit will be awarded only for documented prior learning that has a balance, appropriate to the subject, between theory and practical application, and not just for prior experience. Credit should be appropriate to the academic context in which it is accepted.

Eligibility Requirements
The student must be fully admitted and enrolled at OIT. Credit will not be granted until the student has successfully completed the procedure outlined. Credit for prior experiential learning will not be granted if the student has already received credit for the same course. No more than 25 percent of the credits needed for a degree or certificate may be from credit for prior experiential learning. Credit may only be granted for courses offered by OIT and the university reserves the right to declare any course offering as inappropriate for prior experiential learning credit.

Awarding of Credit
Completion of the institution’s review process does not guarantee a student will receive credit for prior experiential learning. If the student successfully demonstrates evidence of college-level learning, credit will be identified on the student’s transcript as credit for prior learning. This credit will not be graded or counted in the student’s grade point average. Students wishing to appeal the award of credit should appeal to the Provost, whose decision is final.

Tuition and Fees
Fees charged for portfolio assessment are based on the services performed. The application fee for a specified course is published by the Office of Business Affairs. This non-refundable fee must be paid prior to submitting the portfolio for assessment. Proof of payment must accompany the student’s Credit for Prior Experiential Learning Application.

Transfer of Prior Experiential Learning Credit
OIT accepts credit for prior learning from other institutions, provided that the transfer institution awards such credit on the basis of standards similar to those outlined by the Northwest Association of Colleges and Universities (NWCCU).

Faculty Evaluator Qualifications
Credit is awarded based on the recommendation of teaching faculty who are qualified in the subject area, who have adequate training in portfolio evaluation and who are on regular appointment with the university on a continuing basis.

Procedure
Students seeking credit for prior experiential learning should first confer with their advisor to help assess if their experience and learning are appropriate for this process. If it is determined that experiential learning assessment is appropriate, the student should contact the University Registrar.

The University Registrar will determine whether the student has met the eligibility requirements outlined in this procedure. If so, the University Registrar and the Department Chair will sign the student’s Credit for Prior Experiential Learning Application. The student must then complete a prior experiential learning documentation course. This course may be utilized for curricular requirements by the major department if appropriate.

Upon completion of the documentation course, the student will submit his/her Credit for Prior Experiential Learning Application and completed portfolio to the appropriate faculty evaluator as determined by the department chair. The faculty member will review the portfolio and if necessary will interview the student. Review of the portfolio will ensure that the learning experience demonstrates the theories, competencies, and outcomes of the academic subject matter. When appropriate, the faculty member may choose to consult with others who have expertise in the subject matter before making a decision as to whether or not to grant credit. The final decision is recorded on the student’s Credit for Prior Experiential Learning Application and will be forwarded to the University Registrar. The Credit for Prior Experiential Learning Application will be included in the student’s permanent academic record. The portfolio will be retained in accordance with OIT’s archive guidelines.

Catalog of Graduation
The student must meet all degree requirements from one OIT catalog. The catalog must be chosen from the year the student is first admitted and enrolled at OIT or from any subsequent year. However, at the time of graduation, all students, including transfer students, must use a catalog that is not more than seven years old.

Transfer students may select their catalog of graduation prior to full admission to OIT by obtaining written approval from their OIT major department and the University Registrar. The agreed-upon catalog will be the one a student uses when he/she transfers to OIT. Students must enroll at OIT within two years of this approval.
Departments periodically review their curriculum for technical currency. As a result, significant program changes may occur. Courses previously required in the curriculum may no longer be offered. The major department will provide a transition plan for students to fulfill degree requirements.

Programs discontinued by the university may have specific entrance and graduation limits that override this catalog-of-graduation policy.

Baccalaureate Upper-Division Credit Requirement

Baccalaureate students must complete a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division work is defined as 300- and 400-level classes at a bachelor’s-degree-granting institution.

Grading System

Student academic achievement is evaluated and reported in accordance with a system of letter grades assigned at the end of each course. These grades become part of the student’s transcript, a permanent academic record. A summary statement of a student’s total academic record is expressed as a cumulative grade point average (GPA).

Grading Policy

OIT uses a 4.0 grading scale to evaluate student performance. Upon completion of a course or upon termination of attendance in the course, a student’s performance will be graded by the instructor and reported to the University Registrar as follows:

<table>
<thead>
<tr>
<th>LETTER GRADE</th>
<th>MEANING</th>
<th>POINTS PER CREDIT HOUR</th>
<th>USED TO CALCULATE GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Exceptional</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>Superior</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>Average</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>Inferior</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>Failed</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>IP</td>
<td>In Progress</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>Audit</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>NP</td>
<td>No Pass: Equated to a “D” or “F”</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>P</td>
<td>Pass: Equated to a “C” or better</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawn</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Z</td>
<td>No Grade Assigned</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

Each term, students with a GPA of 3.30-3.69 are included on the Dean’s List.

Non-Standard Grading

Courses may be graded on the pass (P)/no pass (NP) basis at the discretion of the department and the University Registrar. Courses may include, but are not limited to seminars, externships, co-ops, independent study, certificate classes, and physical education.

Class Drop/Withdrawal Policy

A student may drop/withdraw from a course through Friday of the seventh week of the term. Although teaching faculty may drop a student during the first two weeks of the term, according to the Faculty Initiated Withdrawal Policy, they are not required to do so. Students will be notified of instructor-initiated drops in writing.

Faculty-Initiated Withdrawal Policy

Teaching faculty can drop a student during the first two weeks of the term from a class if the student has not attended by the second regularly scheduled meeting of that class. The student will be notified of the withdrawal in writing by the Registrar’s Office.

Student Initiated Drops/Withdrawals

1. During the first 10 days of the term, a student may drop one or more courses with no record. However, if a student withdraws from all courses, the student’s transcript will note “Complete Withdrawal.”
2. After the first 10 days of the term, a student who withdraws from one or more courses will receive a “W” for those courses. Students may withdraw from individual courses through Friday of the seventh week of the term.

3. After Friday of the seventh week, students will receive a letter grade (“A”, “B”, “C”, “D”, “F”, “P”, “NP”, “I” or “IP”) from the instructor.

NOTE: The deadlines for dropping/withdrawing from a course are listed in the Academic Calendar.

Complete Withdrawal
If a student is currently registered and decides to withdraw from all classes, the student must notify the Registrar’s Office. Upon notification, the student will be required to complete the appropriate documentation.

1. Complete withdrawals from the university may be processed through Friday of the week prior to final-exam week.
2. Financial aid will be held for future terms after a complete withdrawal has been processed.
3. Depending on the time of the term, a complete withdrawal will result in a notation of a “complete withdrawal” or “Ws” on the student’s transcript.

Incompletes
When the quality of a student’s work is satisfactory, but some essential requirement of the course has not been completed for reasons acceptable to the instructor, a grade of Incomplete (I) may be assigned and additional time granted for completion. The instructor is responsible for submitting an “I” grade and completing the Request for Incomplete form and submitting it to the Registrar’s Office.

An “I” grade must be removed by the end of the next term (summer session not included). An “I” may only be extended under the most extenuating circumstances and then only for one additional term. If an “I” is not removed within the allotted time, the “I” then reverts to the alternate grade assigned by the instructor on the incomplete form.

Grade Point Average
A student’s GPA is computed by assigning a numerical point value to each grade: “A,” 4 points per credit; “B,” 3 points per credit; “C,” 2 points per credit; “D,” 1 point per credit; “F,” 0 points per credit.

GPA is the quotient obtained by dividing total grade points by total hours attempted. Grades of “I”, “P”, “NP”, “W” and “N” are disregarded in calculating GPA; however, a “P” is equivalent to a “C” or better. For example:

Medical Withdrawal
Students requesting a medical withdrawal based on a physical or mental-health condition should consult with the Vice President for Student Affairs (VP/SA) or designee. For more information, please refer to the Student Handbook.

<table>
<thead>
<tr>
<th>Class #</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Point Value for Credits</th>
<th>Earned Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td>B</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>ECO 201</td>
<td>Economics</td>
<td>3</td>
<td>C</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
<td>A</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
<td>3</td>
<td>B</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Lab</td>
<td>1</td>
<td>B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HED 250</td>
<td>Contemporary Health Issues</td>
<td>2</td>
<td>A</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>PHED 190</td>
<td>Racquetball</td>
<td>1</td>
<td>B</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

GPA = \frac{\text{Sum of earned grade points}}{\text{Credits attempted}} = \frac{54}{17} = 3.18

Incompletes received in the anticipated term of graduation must be finished and the grades recorded in the Registrar’s Office within three weeks after the end of the final term. Otherwise, the diploma will be delayed until the term during which all degree requirements are met.

In Progress (IP) Grade
The “In Progress” grade is used for classes with coursework that continues past the end of the term in which the student is registered. Examples include externship, co-op, clinical and project classes. The “IP” grade may be retained over multiple terms. Upon completion of the required coursework the “IP” grade will be replaced by a letter grade.

Repeat Policy
The following restrictions apply for course-repeat situations:

1. Students may attempt the same course (for a “W” or a letter grade) a total of four times.
2. Each withdrawal (“W”) is considered an attempt. Withdrawals, however, are not included in GPA calculations.
3. The new grade earned will replace the previous grade(s) when computing GPA. Only the first two earned grades will be excluded for GPA calculations. The last grade earned will be used on the petition to graduate.
4. All grades and credits remain on the student’s official transcript.

NOTE: Students should consult with their financial-aid counselor to determine financial eligibility for repeat courses.

Auditing Policy
A student has the option to enroll in a class for informational purposes only. This enrollment is classified as an audit and is regulated by the following procedures:

1. Audit classes are charged at regular tuition rates as printed in the class schedule.
2. The only grade an audit class may be granted is “N” (audit). The “N” grade is disregarded in the GPA and is not valid toward graduation requirements.
3. Class attendance shall be in accordance with the instructor’s attendance policy for all students in the class.
4. Instructors having audit students have no obligation to grade or record the audit student’s work.
5. An audit option may be requested during the registration period. Changes “to” or “from” the audit option may be requested no later than the 10th academic day of the term.
6. Students auditing a course may, at a later term:
 a. Register for the same course for credit.
 b. Challenge the course by examination.

Excessive Course Load
Admitted students are allowed to register for 21 credit hours (including audits) during an academic term without special permission. Fifteen credits are the maximum for summer session. Students wishing to register for an overload must have a 3.0 cumulative GPA and receive special approval from the advisor and the University Registrar. Appeals may be considered for special circumstances. The class schedule will provide associated tuition costs each term.

Non-admitted students are restricted to eight credits per term, with the exception of summer, where fifteen credit hours are the maximum.

Substitution Within the Curriculum
Students desiring to depart from the curriculum prescribed in the catalog should contact their departmental advisor to begin the process. It is the responsibility of the student to file a petition with the Registrar’s Office for such changes. Substitution forms must be approved and filed prior to or with the petition for graduation in order to assure acceptability toward meeting graduation requirements.

Dead Week Policy
Dead Week (the period of Monday morning prior to finals week until the Monday morning of finals week) is the last week of regularly scheduled activities for the term. As such, Dead Week includes routine activities (e.g., lectures, discussions, laboratories, quizzes, assignments, appropriate course reviews, etc.).

1. Final examinations, when utilized, must be given at the scheduled time during finals week.
2. No student activities or athletic events will be scheduled during Dead Week.
3. Projects and/or examinations due Dead Week may not exceed 20 percent of the final course grade without giving students at least three weeks prior notice.

The appropriate vice president must approve any exceptions to this policy.

Final Exams
All teaching faculty will meet their classes during finals week at the final-examination time designated in the official class schedule issued at the beginning of each term.

1. No student activities or athletic events will be scheduled during finals week.
2. Methods of evaluation are at the discretion of the instructor. They should be specified in the course syllabus and distributed to students the first week of class.
3. Faculty who use a final examination will administer that exam at the time designated in the official class schedule. Finals times are designed not to conflict.

Individual students may request exceptions to this policy. These must be approved in advance by the instructor.

Course instructors may request exceptions to this policy. The exception must be approved by the dean of the school and students should be given at least three weeks prior notice of the change.

Academic Forgiveness
The Academic Forgiveness policy allows undergraduates with an unsatisfactory GPA to drop a maximum of three consecutive terms of work from consideration in their GPA. Academic forgiveness applies to terms only. Students are not allowed to select courses within terms for forgiveness.

Academic forgiveness is granted on a case-by-case basis by the Academic Progress and Petitions Committee. It is an extreme measure; it may be granted only once and only when a student provides clear and convincing evidence of a renewed commitment to advancing his or her education. Once forgiveness is granted, it may not be revoked. Forgiveness can be applied only to credits earned at OIT.

If the petition is approved, the student’s transcript will have a notation stating, “Academic Forgiveness Granted” above each term in which forgiveness was granted. Forgiven courses and grades are no longer calculated in the GPA and do not apply toward graduation. However, a record of all coursework will remain on the transcript.

Eligibility
To apply for consideration for academic forgiveness a student must:

1. Have earned less than a 1.0 term GPA for the term(s) being considered for forgiveness. The term(s) for which forgiveness is being requested must have
been taken at least seven years prior to the request;
2. Have had at least a two-year lapse in enrollment at OIT;
3. Be currently enrolled at OIT;
4. Have completed a minimum of 30 graded credits at OIT with minimum cumulative GPA of 3.0 or better since resuming studies at OIT;
5. Apply for forgiveness with the Academic Progress and Petitions Committee before degree completion.

Procedure
To apply for academic forgiveness, a student must submit a formal letter of request to the University Registrar, which must include:
1. Specific term(s) (maximum of three consecutive) for which forgiveness is being requested;
2. Statement of academic goals and a term-by-term plan for degree completion signed by the student’s academic advisor;
3. Rationale for the request.

The University Registrar will forward the application to the Academic Progress and Petitions Committee for review and will notify the student of the Committee’s decision.

Veterans Satisfactory-Progress Standards
The Veterans Coordinator administers the satisfactory-progress standards for students who are receiving educational benefits. The following satisfactory progress requirements apply:
1. Students must make satisfactory progress toward their certified educational objectives. They must satisfactorily complete all courses for which they have been certified.
2. Students who reduce their course load at any time during the term must notify the Veterans Coordinator of this reduction. Withdrawals from courses after the drop period may result in an overpayment of benefits unless there are mitigating circumstances.
3. Students must maintain a term GPA of 2.0 or better. A term GPA of less than 2.0 constitutes unsatisfactory progress.
4. The Veterans Administration will be notified by OIT within 30 days of any change in status or failure to meet satisfactory progress.
5. Students will be placed on probation at the end of the first term of unsatisfactory progress. The length of the probationary status is one term. Failure to meet satisfactory progress at the end of the probationary term could result in termination of benefits.

Graduation

Application for Graduation
Students must file an Application to Graduate and a Petition for Graduation at least two terms prior to the term of graduation. These forms are available online at www.oit.edu/registrar, at the Registrar’s Office, in the Portland Programs offices and in academic departments. They are submitted to the Registrar’s Office for evaluation.

OIT Portland students must schedule a graduation degree-check appointment with their major’s program director at least two terms prior to graduation. The final graduation check is completed by the Registrar’s Office at the Klamath Falls campus.

Grade Point Requirement
OIT requires a minimum cumulative GPA of 2.0 for graduation.

Graduation Residency Requirements
All degrees require students to take a minimum number of OIT courses. For an associate degree, a minimum of 30 term-credit hours must be taken from OIT. For a bachelor’s, a minimum of 45 term-credit hours must be taken from OIT. Credits earned through OIT course challenge or the OIT Credit-for-Prior-Learning program are considered resident credits toward graduation requirements. All other credits granted by examination (CLEP or AP) or other methods are non-resident credits. Students desiring to complete course requirements for graduation from OIT at another college or university must receive prior approval from the Registrar’s Office.

Catalog of Graduation
Students must meet all degree requirements from one OIT catalog. The catalog may be chosen from the year the student is first admitted and enrolled or from any subsequent year. However, at the time of graduation, all students, including transfer students, must use a catalog that is no more than seven years old.

Transfer students may select their catalog of graduation prior to full admission to OIT by obtaining written approval from their OIT major department and the University Registrar. The agreed-upon catalog will be the one a student uses when he/she transfers to OIT. Students must enroll at OIT within two years of this approval.

Departments periodically review their curriculum for technical currency. As a result, significant program changes may occur. Courses previously required in the curriculum can no longer be offered. The major department will provide a transition plan for students to fulfill degree requirements.

Programs discontinued by the university may have specific entrance and graduation limits that override the catalog of graduation.

Multiple Majors
An undergraduate student may earn multiple majors if all the degree requirements for each major are met. All successfully completed majors will be listed on both the transcript and diploma.

Concurrent Degrees
Students may be granted a second bachelor’s degree provided they meet the requirements for both degrees and complete an additional 36 credits beyond the requirements of the first degree. Forty-five credits are required if the first degree was not granted by OIT and students must meet the general-education requirements as outlined in their catalog of graduation. If the first bachelor’s degree was granted by OIT, the general-education requirements are waived for the second degree.
Curricular Requirements
Curricular requirements are determined by, and vary with, the departments involved. Major requirements are published in this catalog.

Minors
A minor consists of a minimum of 18 credits in a subject field outside the student’s major. The total credits required for a minor depend on the academic discipline, the prerequisites of the required courses and the student’s starting level in the discipline. Requirements for approved minors are listed by department in this catalog. Minors will only be granted at the time students receive their baccalaureate degrees. Application for a minor must be submitted to the University Registrar with the student’s petition to graduate.

General Education Requirements
All students must complete the university general education requirements as listed in the curriculum map for the major and in this catalog. If a student holds a baccalaureate degree or higher from a recognized, accredited institution, as determined by OIT, the OIT general education requirements for the OIT baccalaureate may be waived subject to departmental program requirements.

Transfer students entering OIT who have earned either an Associate of Arts Oregon Transfer degree (AAOT) or an Associate of Science in Business degree (ASOTB) from an Oregon community college will be considered as having met OIT’s lower-division general education requirements.

Course Substitutions
Students may seek course substitution approval by completing the Course Substitution form and obtaining the signature of the advisor, department chair and University Registrar. Course substitutions for general-education requirements must satisfy the same category of general-education requirement. For example, a humanities course specified by the major department may be substituted for another humanities course, subject to the above approvals.

Graduation in Absentia
Students wishing to complete the OIT degree by attending another college and transferring work after the minimum-residency credits have been met (30 for associate and 45 for bachelor’s degree) must complete a Petition to Graduate and have the final transferring classes approved for their degree by the transcript evaluator in the OIT Registrar’s Office. This should be done prior to leaving OIT and beginning at the other college.

Commencement
OIT’s graduation ceremony is held in June each year at which time degrees are granted to all who have satisfactorily completed all major and university general education requirements during the preceding spring term. Summer, fall and winter-term graduates who have already received diplomas may also participate in Commencement.

Students who demonstrate the ability to graduate in the following summer term may also participate in Commencement ceremonies. However, summer graduates will not receive academic honors or diplomas at the spring commencement.

Diplomas
OIT awards diplomas at Commencement based on preliminary grades and preliminary degree checks for spring-term graduates. Students who receive a diploma at Commencement, but do not subsequently complete degree requirements, will be notified after the final degree check. The student will be asked to return the diploma. The university will place a hold on the student’s registration privileges and transcript if the diploma is not returned.

Those students with estimated failing or incomplete grades will receive a letter, rather than a diploma, inside the diploma cover. After completion of all degree requirements, these students will receive their diplomas in the mail. Diplomas will also be held until all fees and charges due OIT have been paid and exit interviews have been completed for Federal, Perkins and institutional loans.

Academic Honors
At each Commencement, OIT recognizes academically outstanding students who will receive their bachelor’s degree with academic honors. This honor is based on all OIT courses. To be eligible for honors a student must complete a minimum of 75 OIT credits.

Academic honors are based on the following criteria:

Cum Laude—graduation with honors—3.50-3.74 GPA
Magna Cum Laude—graduation with high honors—3.75-3.89 GPA
Summa Cum Laude—graduation with highest honors—3.90-4.00 GPA.

Note: Students who do not have 75 OIT credits and who are graduating from a Degree Completion program must complete a minimum of 45 graded OIT credits to be eligible for honors. For Degree Completion students, who fall into this category, honors are based on all OIT courses and transfer courses used for the degree.

Honors recognized at the graduation ceremony do not include grades from the term immediately preceding Commencement. After final grades are posted, the honors standing of some students may change. These students will be notified. A student’s final honors standing will be posted on the official transcript.
General Education Requirements

OIT’s General Education requirements provide breadth and depth to the OIT educational experience. The requirements are designed to help students widen perspectives, explore relationships between subjects and develop critical and analytical thinking skills in areas integrated with a student’s major. General education provides the core of an undergraduate university education. These courses help students make progress toward becoming educated persons and provide a foundation for lifelong learning.

Through general education at OIT, students study broad topics, principles, theories and disciplines. The courses are organized within the curriculum in such a manner that students will acquire knowledge, abilities and appreciation as integrated elements of the educational experience. In addition, general education courses teach students to communicate clearly, think critically and globally, define and solve problems within and across disciplines, calculate logically and apply scientific reasoning. No matter what their major, students will benefit from studying areas of knowledge that help them become competent, well-rounded professionals as well as well-educated human beings and citizens.

The General Education Advisory Council and OIT’s faculty review the general education curriculum regularly. OIT’s goal for General Education is to help students become literate, informed, critical participants in a diverse and rapidly changing global society. If a student holds a baccalaureate degree or higher from a recognized, accredited institution, as determined by OIT, the general-education requirements for the OIT baccalaureate may be waived subject to departmental program requirements.

Baccalaureate General Education Requirements

Communication
SPE 111 Fundamentals of Speech
WRI 121 English Composition
WRI 122 English Composition

Plus nine credits from the following list:

Humanities
Nine credits selected by student or specified by a major department from the following:
ART – Art; ENG – Literature; HUM – Humanities; MUS – Music; PHIL – Philosophy; Languages (second year); COM 205*, COM 320*. Other transfer courses, defined as “humanities” by the Registrar’s Office, may be used in this category. No more than three credits of activity or performance-based courses may be used in this category.

* COM 205 and COM 320 may not be used to satisfy both Communication and Humanities credits.

Social Science
Twelve credits selected by student or specified by a major department from the following:
ANTH – Anthropology; ECO – Economics; GEOG – Geography; HIST – History; PSCI – Political Science; PSY – Psychology; SOC – Sociology. Other transfer courses, defined as “social science” by the Registrar’s Office, may be used in this category. No more than three credits of activity or performance-based courses may be used in this category.

* ANTH 101 may not be used to satisfy both Social Science and Science credits.
* GEOG 105 and GEOG 115 may not be used to satisfy Social Science credits.

Technology
Specific requirements for demonstrating computer proficiency may be established by the academic department.

Science/Mathematics
One four credit college-level mathematics course for which at least intermediate algebra is the course prerequisite.

Plus 12 credits selected by student or specified by major department from biological sciences (BIO, CHE), mathematics (MATH), physical sciences (PHY), physical geography (GEOG 105 or GEOG 115) geology (GEOL) or physical anthropology (ANTH 101). Other transfer courses, defined as “Science/Mathematics” by the Registrar’s Office, may be used in this category. At least four credits must be completed from a laboratory-based science course in BIO, CHE, GEOG, GEOL or PHY.

Baccalaureate Upper-Division Requirement
Baccalaureate students must complete a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division work is defined as 300- and 400-level classes at a bachelor’s-degree-granting institution.

Bachelor of Science Degree
The Bachelor of Science degree requires the student to opt between completion of 36 credits in mathematics and science or 45 credits in mathematics, science and social science. Students placed at a higher beginning level of mathematics than is published in the curriculum of their major may choose to substitute those mathematics credits surpassed by their accelerated level of placement with electives from any department to attain the required number of general-education credits required by the university for graduation.
Intercultural Studies

Students are encouraged to select at least one class from the following lists of intercultural courses. These courses also satisfy general education requirements.

Humanities: COM 205 Intercultural Communication, COM 320 Advanced Intercultural Communication, ENG 381 Contemporary World Literature, SPAN 201/202/203 Second-Year Spanish.

Social Science: ANTH 103 Introduction to Cultural Anthropology, GEOG 106 Cultural Geography I, GEOG 107 Cultural Geography II, GEOG 108 Cultural Geography III, HIST 392 Modern Asia.

Notes

Students who graduated from high school in 1997 or after, who did not complete two years of a foreign language in high school, must complete two terms of college-level foreign or second language in order to receive an OIT degree.

Remedial or developmental courses, including MATH 100 and WRI 115, cannot be used for graduation.
University Departments and Programs
Degrees, Options, Minors, Specializations and Certificates

Departments and Programs
Allied Health Partnerships
Clinical Laboratory Science Program
Paramedic Education Program
Civil Engineering
Communication
Computer Systems Engineering Technology
Dental Hygiene
Electrical Engineering and Renewable Energy
Geomatics
Humanities and Social Sciences
Management
Manufacturing and Mechanical Engineering and Technology
Mathematics
Medical Imaging
Natural Sciences
Nursing (through OHSU School of Nursing)
Physical Education and Health Education (selected courses)
Polysomnographic Technology Program
Respiratory Care Program

Bachelor of Science in:
Allied Health Management
Applied Mathematics
Applied Psychology
Biology
Civil Engineering
Clinical Laboratory Science (joint degree with OHSU)
Communication Studies
Computer Engineering Technology
Dental Hygiene
Diagnostic Medical Sonography
Echocardiography
Electrical Engineering
Electronics Engineering Technology
Embedded Systems Engineering Technology
Environmental Sciences
Geomatics, with options in:
Geographic Information Systems Surveying
Health Sciences
Information Technology, with options in:
Accounting
Applications Development
Business/Systems Analysis
Health Informatics
Management, with options in:
Accounting
Entrepreneurship/Small Business Management
Marketing
Manufacturing Engineering Technology
Mechanical Engineering
Mechanical Engineering Technology
Nuclear Medicine Technology
Nursing (through OHSU School of Nursing)
Operations Management
Radiologic Science
Renewable Energy Engineering
Respiratory Care
Software Engineering Technology
Vascular Technology

Associate of Applied Science in:
Dental Hygiene
Emergency Medical Technology–Paramedic (joint degree with OHSU)
Polysomnographic Technology

Associate of Engineering in:
Computer Engineering Technology
Software Engineering Technology

Minors in:
Applied Mathematics
Biology
Business
Geographic Information Systems
Human Communication
Information Technology
International Business
International Relations
Psychology
Technical Communication

Specialization in:
Accounting
Entrepreneurship/Small Business Management
Marketing
Picture Archiving and Communication Systems (PACS)
Travel and Tourism

Certificate in:
Accounting (post baccalaureate)
Dispute Resolution
Polysomnographic Technology

Module in:
Oregon Transfer
Allied Health Partnerships
Marian Ewell, Department Chair

Degrees Offered
Bachelor of Science in Clinical Laboratory Science (joint degree, OIT and OHSU)
Associate of Applied Science in Emergency Medical Technology—Paramedic (joint degree, OIT and OHSU)

The Department of Allied Health Partnership Programs offers undergraduate curricula in Clinical Laboratory Science and Emergency Medical Technology (Paramedic). Each program is designed to prepare individuals for professional practice in these specific health care specialties. The department is committed to training health care professionals through education, research, scholarship, clinical practice and community service. The curricula provide tools to effectively address changing health problems of society. Each of the programs is accredited by its respective accrediting agency and meets all requirements set forth in the standards of an accredited program.

The Department is located in the following sites:
- Clinical Laboratory Science Program: Oregon Health & Science University, Portland
- Paramedic Education Program: Tualatin Valley Fire and Rescue, Regional Training Center, Sherwood

Enrollment in each program is limited. Completion of the prescribed general university curriculum does not assure a student acceptance into the limited admission programs. Contact the respective program office in the fall term preceding anticipated enrollment to obtain admissions application information. Student selection is competitive with consideration to academic achievement, character and demonstrated interest.

Clinical Laboratory Science Program
Marian Ewell, Program Director

Assistant Professors: M. Ewell, D. Taylor
Associate Professors: A. Furman, S. Goodstein

Degree Offered
Bachelor of Science in Clinical Laboratory Science (joint degree, OIT and OHSU)

The Bachelor of Science in Clinical Laboratory Science (also called Medical Technology or Medical Laboratory Science) prepares the student for entry into the clinical laboratory science profession. Oregon Institute of Technology (OIT) and Oregon Health & Science University (OHSU) jointly offer the Clinical Laboratory Science Bachelor of Science Program, established in 1933 at OHSU. Students learn about laboratory sciences and develop skills in analytical thinking, problem solving, and communication to provide better health care. The structured laboratory program includes technical instruction and practical experience providing undergraduate university instruction at the senior level. The program comprises 12 months (4 consecutive terms on the OIT Portland/OHSU campus beginning each fall term) followed by an extended fifth term (second fall term), which is a 16-week clinical-laboratory externship. Completion leads to a joint baccalaureate degree from OIT and OHSU. Graduates are in demand and well prepared to enter the profession of clinical laboratory science.

Credentialed
Graduates of the Clinical Laboratory Science Program are eligible to take the American Society for Clinical Pathology (ASCP) Board of Certification (BOC), the nationally recognized examination certification, (medical laboratory scientist).

Accreditation
The Clinical Laboratory Science Program is accredited by the National Accrediting Agency for Clinical Laboratory Science (NAACLS), a specialized accrediting body recognized by the Council for Higher Education Accreditation. Contact information for NAACLS is:

National Accrediting Agency for Clinical Laboratory Sciences
5600 North River Road, Suite 720
Rosemont, IL 60018-5119
(773) 714-8880
(773) 714-8886 (fax)
info@naacls.org
http://www.naacls.org

Mission Statement
The mission of the OIT–OHSU CLS Program is to provide a quality education to the students in the field of Clinical Laboratory Science. Our goals are to admit and retain students with demonstrated abilities from all segments of the population and to continue to provide students with a quality of education that exceeds national accreditation standards. Our expectation is to graduate individuals who are professionally competent; who possess a commitment to lifelong learning; who exhibit a sense of commitment to the ethical and humane aspects of patient care; who appreciate the need for research to develop knowledge of health, disease, health care management and education; and who recognize the role of the medical laboratory scientist in the assurance of quality health care.

Admission Requirements

Admission to the Program as an OIT Freshman
During the freshman year at OIT, students may apply for acceptance into the Early Admission to Clinical Laboratory Science Program track (EACLSP). Students who successfully complete this track will be automatically admitted to the professional portion of the CLS program, conducted in Portland.

Students enrolled in the EACLSP track must meet the following criteria to be admitted into the professional portion of the CLS Program:

a. Enroll in a minimum of 12 credits per term;

b. Successfully complete all required coursework with grades of “C” or better;

c. Earn a minimum GPA of 3.0 in each term;
d. Maintain a cumulative GPA of at least 3.25;

e. Adhere to the Student Life Policies and Regulations and the OIT Academic Regulations - see the OIT General Catalog and OIT Student Handbook.

f. Job shadow, in a hospital clinical laboratory setting, a minimum of 20 hours.

Letter grades of “U”, “I” or “N” do not apply toward the above GPA requirements, nor do “repeated” classes or withdrawals. Review of each student’s cumulative GPA will be completed annually after spring term grades are posted. Students who fail to meet any of these criteria will be automatically dropped from the EACLSP track, but are encouraged to apply to the CLS Program through the regular admission process (see CLS application dates) during their third year.

Admission to the Program for Non-OIT Students and Students not in the EACLSP

The CLS Program culminates in a Bachelor of Science in Clinical Laboratory Science degree. Students may enter the CLS Program with or without a baccalaureate degree. Those students entering the program without a baccalaureate degree must have completed at least 103 transferable quarter term hours at an accredited college, community college and/ or university prior to matriculation, and be eligible for an OIT/OHSU baccalaureate degree upon completion of the program. Although students may apply to the program while in the process of completing the admission requirements, those admitted must provide a final transcript prior to registration at OIT to certify the completion of all prerequisite courses. Those students entering the program without a degree must meet both program prerequisites (see below) and OIT general education requirements (see General Education in this catalog for requirements).

Students entering with a baccalaureate degree from an accredited college or university are not required to meet OIT’s General Education requirements.

CLS Program Prerequisites

Undergraduate coursework of at least 103 term hours must include the following:

- At least 24 term credit hours of chemistry lectures and laboratory experience. Courses can be chosen from general chemistry, inorganic chemistry, organic chemistry, biochemistry, quantitative analysis and physical chemistry.

- At least 24 term credit hours of biological science lectures and laboratories. This must include at least one microbiology (bacteriology) class and one immunology class. Other recommended biology classes are genetics, physiology, anatomy and cell biology. Survey courses do not qualify as fulfillment of chemistry or biological science prerequisites.

- One college-level mathematics course is required. Minimum requirements are met by college algebra (MATH 111 or an equivalent college course).

Individuals who have met admission requirements seven or more years prior to application to the Clinical Laboratory Science Program must complete additional academic work to qualify. This may be accomplished by one of three routes:

1. Completion of college-level courses in biochemistry and microbiology or immunology with a grade “C” or better.

2. Receiving credit by examination in biochemistry and microbiology; the examination grade must be equivalent to a grade “C” or better. This examination must be administered by an instructor at an accredited college or university. The OIT-OHSU CLS Program does not administer these examinations.

3. Achieving a CLEP score at or above the 50th percentile on both biology and chemistry examinations. (Information can be obtained by writing to the Education Testing Service, CLEP, Box 592, Princeton, NJ 08540.)

The Clinical Laboratory Science faculty and staff determine clinical site assignment. Although students admitted into the Clinical Laboratory Science Program are guaranteed a clinical externship, due to limitations in available externship sites from year to year, student placement at a specific site, or at a specific time, may not be possible. Placement in a clinical externship is subject to the following:

1. All academic on campus requirements must be met before the start of the externship.

2. Externship placement occurs no later than the fourth term (summer term).

3. Prior to the start of the externship students must comply with all externship facility requirements. This may include passing a drug test, and completing a request for criminal history.

Graduation Requirements

Students must maintain a minimum GPA of 2.00 to be eligible for graduation. In addition, a final grade of “C” or better in all lecture and student laboratory courses, as well as receiving a grade of “Pass” in all rotations in the clinical externship is required for graduation.
Bachelor of Science in Clinical Laboratory Science

Curriculum
All senior level courses require admission to the Clinical Laboratory Science Program or instructor consent. Required courses and recommended terms during which they should be taken:

Pre-Clinical Laboratory Science
Freshman Year Fall
BIO 231 Human Anatomy and Physiology I 4
MATH 111 College Algebra 4
WRI 121 English Composition 3
Intro elective 2
Total 13

Freshman Year Winter
BIO 200 Medical Terminology 2
BIO 232 Human Anatomy and Physiology II 4
WRI 122 English Composition 3
Social Science elective 3
Total 12

Sophomore Year Fall
BIO 345 Medical Microbiology 5
CHE 221 General Chemistry 5
WRI 227 Technical Report Writing 3
Total 12

Sophomore Year Winter
BIO 209 Current Research Topics in Medical Sciences I 1
BIO 346 Pathophysiology I 3
CHE 222 General Chemistry 5
WRI 327 Advanced Technical Writing 3
Total 12

Junior Year Fall
CHE 331 Organic Chemistry I 4
SPE 321 Small Group and Team Communication 3
Humansities elective 3
Social Science elective 3
Total 13

Junior Year Winter
BIO 341 Medical Genetics 3
CHE 332 Organic Chemistry II 4
PHIL 331 Ethics in the Professions 3
Social Science elective 3
Total 13

Junior Year Spring
BIO 436 Immunology 4
CHE 103 Elementary Chemistry 3
CHE 106 Elementary Chemistry Laboratory 1
Humansities elective 3
Social Science elective 3
Total 14

* Freshman fall Intro elective – choose one of the following:
 - ACAD 105 Achieving Academic Success
 - HED 240 Emergency Care & CPR
 - HED 246 Drugs and Alcohol Problems of Modern Society
 - HED 250 Contemporary Health Issues
 - HED 260 Diet and Exercise for Lifetime Fitness

Professional Courses
Senior Year Fall
CLS 406 Biometry 2
CLS 410 Clinical Microbiology I 2
CLS 420 Clinical Immunology 3
CLS 441 Practicum: Instrumentation
 Group 1**
CLS 442 Practicum: Hematology 6
CLS 443 Practicum: Transfusion Medicine
 Group 2**
CLS 444 Practicum: Microbiology 6
CLS 445 Practicum: Mycology 2
CLS 446 Practicum: Parasitology 2
Total 18

Senior Year Winter
CLS 411 Clinical Microbiology II 2
CLS 415 Clinical Chemistry I 6
CLS 447 Practicum: Chemistry 6
CLS 448 Practicum: Immunology/
 Infectious Serology 2
CLS 449 Practicum: Urinalysis 2
Total 18

Senior Year Spring
CLS 412 Pathophysiology 2
CLS 416 Clinical Chemistry II 2
CLS 422 Theories of Molecular Methods
 Group 2**
CLS 442 Practicum: Hematology 6
CLS 443 Practicum: Transfusion Medicine
 Group 1**
CLS 444 Practicum: Microbiology 6
CLS 445 Practicum: Mycology 2
CLS 446 Practicum: Parasitology 2
Total 16

Senior Year Summer
CLS 419 Immunohematology 2
CLS 423 Molecular Techniques 1
CLS 440 Practicum: Specimen Collection 1
CLS 452 Practicum: Advanced Hematology
 Techniques 2
CLS 453 Practicum: Advanced Transfusion
 Medical Techniques 2
CLS 454 Practicum: Advanced Microbiology
 Techniques 2
CLS 457 Practicum: Advanced Chemistry/
 Immunology Techniques 2
CLS 459 Practicum: Advanced Urinalysis
 Techniques 1
CLS 462 Clinical Laboratory Management 2
Total 16

** The class is divided into two groups. Students will be assigned to a group for practicum rotations.

Paramedic Education Program

Suzann Schmidt, Program Director
Todd Ellingson, M.D., Medical Director
Instructors: K. Darling, J. Dillingham, S. Schmidt

Adjunct Faculty: The program utilizes professional instruction from many of the faculty physicians, physician’s assistants, and nurses at OHSU, as well as many other health care professionals from the community.

Degree Offered
Associate of Applied Science in Emergency Medical Technology–Paramedic (joint degree through OHSU and OIT).

The Associate of Applied Science in EMT–Paramedic (also called the Paramedic Education Program) prepares students for a clinical career as a paramedic. Upon completion of the program, graduates are eligible to sit for the National Registry EMT–Paramedic examination. Successful completion of the national examination process can lead to both national and Oregon certification.

The Paramedic Education Program was established in 1977 at Oregon Health & Science University. A collaborative program
with Oregon Institute of Technology was initiated in 2001. Academic classes utilize facilities at both OHSU and Tualatin Valley Fire and Rescue, Regional Training Center. Clinical rotations utilize a variety of departments in Portland-area hospitals. The students complete a field externship practicum with one of a variety of agencies throughout the country, who are affiliated with the program.

Accreditation
The Paramedic Education Program is nationally accredited by The Committee on Accreditation of Educational Programs for the Emergency Medical Services Profession (CoAEMSP), a specialized accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S. Department of Education.

Mission Statement
The mission of the Oregon Health & Science University/Oregon Institute of Technology Paramedic Education Program is to educate prehospital care providers; to prepare EMS leaders of the future; and to enhance the delivery of health care in the out-of-hospital setting.

Career Opportunities
Job opportunities are available for certified paramedics in a variety of settings. Paramedics work for ambulance agencies, fire departments, air-medical transport agencies, industrial sites, tactical-medical teams, and hospitals. Paramedic Education Program graduates often find employment opportunities from the agency where they completed their field externship, and are sought after by many fire and EMS agencies nationwide.

Admission Requirements
Students entering the Paramedic Education Program must have completed 37 credit hours of prerequisite courses prior to beginning the program. Prerequisite coursework includes the following required classes:

- At least 37 term credit hours of general education coursework including writing composition, public speaking, elementary algebra, human anatomy and physiology (12 credits at a 200 level or above), health and physical education, computer science, psychology, social science and an approved elective.
- Technical coursework required includes Emergency Medical Technician–Basic (EMT-B), EMT-B Cooperative Work Experience. Applicants must have an Oregon EMT–Basic certification by the beginning of fall term. Out-of-state applicants certified as EMTs may apply for Oregon reciprocity. Applicants are required to have work experience in health care, with a preference given to EMS experience, either volunteer or paid.

Clinical and Field Externship Practicum
The 12-month Paramedic Education Program is divided into three phases. Following 18 weeks of didactic studies in the classroom and skills lab setting, students enter a 16-week clinical rotation phase. During this phase of the program, student work under the supervision of paramedics, physicians, nurses, respiratory therapists, and other health care professionals. The clinical sites are primarily located at Oregon Health & Science University, with additional sites at five of the Portland-area hospitals and health care facilities.

Once students have successfully completed all requirements of the didactic and clinical phases of the program, they spend an additional 10 weeks working under the direct supervision of a Paramedic Field Training Officer responding to actual emergencies. Students have the opportunity to stay in the Portland area for this training, or to go out-of-state. Externship sites include locations in Oregon, Washington, Nevada, Texas, Colorado, Kansas and Missouri.

Graduation Requirements
Students must maintain a minimum GPA of 2.50 to be eligible for graduation. In addition, a “Pass” grade must be achieved for all clinical and externship requirements.

Associate of Applied Science in Emergency Medical Technology–Paramedic

Curriculum
Required courses and recommended terms during which they should be taken:

Paramedic Professional Courses

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHE 210</td>
<td>Clinical Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 215</td>
<td>Essentials of Paramedicine</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 200</td>
<td>Medical Terminology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 218</td>
<td>Trauma Assessment and Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 231</td>
<td>Medical Emergencies I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 235</td>
<td>Basic Electrocardiography</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EMS 271</td>
<td>EMT-Paramedic Skills Laboratory Part I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Winter</td>
<td>EMS 211</td>
<td>Prehospital Emergency Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 232</td>
<td>Medical Emergencies II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EMS 236</td>
<td>Advanced Electrocardiography</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EMS 272</td>
<td>EMT-Paramedic Skills Laboratory Part II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 281</td>
<td>Clinical Practicum I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>EMS 233</td>
<td>Medical Emergencies III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EMS 273</td>
<td>EMT-Paramedic Skills Laboratory Part III</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EMS 282</td>
<td>Clinical Practicum II</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Summer</td>
<td>EMS 290</td>
<td>Field Externship Practicum</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Total Credit Hours for A.A.S. Degree in EMT–Paramedic:

<table>
<thead>
<tr>
<th>Component</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite General Education</td>
<td>37</td>
</tr>
<tr>
<td>Paramedic Course</td>
<td>72</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>109</td>
</tr>
</tbody>
</table>
Civil Engineering

Sean St. Clair, Department Chair
Roger Lindgren, Program Director, Master of Science in Civil Engineering
David Thaemert, Curriculum Coordinator
Professor: R. Lindgren
Associate Professor: S. St. Clair
Assistant Professors: V. Gude, C. Riley, D. Thaemert

The field of civil engineering is concerned with the responsible planning, design, construction and maintenance of the nation’s infrastructure. Civil engineers design highways, bridges, buildings, dams, communities, and water and waste management systems for the enhancement of human welfare and protection of our environment.

Degree Offered
Master of Science in Civil Engineering
Bachelor of Science in Civil Engineering

Program Objectives
The department offers a bachelor’s degree in civil engineering. Graduates from this program will:
1. Be able to practice as a professional civil engineer;
2. Be able to pursue advanced education in civil engineering or a related field;
3. Act as responsible, effective and ethical citizens;
4. Understand and effectively communicate the realistic constraints of civil engineering;
5. Be able to perform effectively in a multi-disciplinary environment.

Students enjoy a close relationship with full-time faculty with advanced engineering degrees who are also licensed professionals with many years of practical experience. Course offerings promote education in relevant theory common to all technical areas, engineering design and principles of sustainable development. These concepts are emphasized and integrated throughout the curriculum in a sequential manner.

Early in the curriculum, elements of the creative design process are introduced as students complete design projects appropriate to the freshman level. While most freshman and sophomore courses are intended to provide a solid background in mathematics, communications, basic sciences, and engineering mechanics, certain courses provide additional concepts and methodologies supporting more advanced topics in sustainability and engineering.

In junior civil engineering courses, students develop a broad engineering base. Junior courses include topics in structural, transportation, water resources and environmental engineering, as well as geotechnical engineering, project management and engineering economics.

In the senior year, students are required to complete an intensive engineering design project. This effort is focused on a professional-quality civil engineering design and includes essential elements of technical communications and group dynamics. The senior project also involves realistic constraints including cost and sustainability considerations, socioeconomic effects, aesthetic choices and ethical deliberations. Graduating seniors prepare for the Fundamentals of Engineering (FE) examination as a first step toward licensure as professional engineers.

To ensure graduates can become responsible, effective citizens and begin building a foundation for lifelong learning, students are required to satisfy OIT general education requirements in communication, humanities, social sciences, and science/mathematics.

Student Preparation
Students interested in the field of civil engineering should emphasize mathematics and science in high school. Two years of algebra and one year each of geometry, trigonometry, chemistry and physics are preferred for entry into the Civil Engineering Program. Additional courses in mathematics and computer-aided drafting are desirable.

Career Opportunities
Upon completing the core curriculum, civil engineering students have a solid foundation in structural, transportation, water resources and environmental engineering. Students can then target specific careers within the broad field of civil engineering.

Structural engineering involves the planning, analysis and design of buildings and other structures, using the principal construction materials of wood, steel and concrete. Structural engineering is supported by geotechnical engineering, which includes design of building foundations and retaining structures, as well as slope stability, groundwater and drainage considerations. Graduates are aware of recent and emerging practices in green building design and technology.

Transportation engineering is concerned with the planning, design, construction, operation, performance, evaluation, maintenance, and rehabilitation of transportation systems and facilities, such as highways, railroads, urban transit, and air transportation systems. Graduates have career opportunities with consulting firms, government agencies, and industry.

Water resource engineering addresses the spectrum of water from supply to transport to use to discharge, and is at the junction of efforts to provide sustainable human and natural environments, in compliance with myriad regulatory mandates. Graduates have opportunities in planning, design, operation and maintenance of hydraulic and water resource projects, floodplain management, or water resource management issues.

Environmental engineering continues to be an expanding field due to heightened environmental awareness and interest in sustainable practice and resulting regulatory mandates. Graduates have opportunities in planning, design, operation and maintenance of water and wastewater treatment facilities and remediation of existing environmental problems, or can address regulatory and compliance issues related to resource and waste management.

Construction management requires knowledge of traditional management methods including planning, economics, estimating and scheduling for projects as well as sustainable design principles and collaborative
and integrated design models. Graduates may work with construction companies or consultants and in various capacities such as construction superintendents, project managers, project engineers or company owners.

Graduates may consider a concurrent degree in environmental sciences to expand career opportunities with a broad spectrum of government agencies, consulting firms, and industry.

Accreditation
The Civil Engineering Program is accredited by the Engineering Accreditation Commission (EAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Graduation Requirements
All courses listed in the curriculum for the current catalog year must be completed to be eligible for graduation, unless a student has already completed the requirements for a category that has changed. When changes are made to the curriculum, students who entered the program under a previous catalog will work with their academic advisors to transition to meet the requirements of the current catalog.

A minimum of 182 credits must be completed and students must maintain a 2.0 GPA to be eligible for graduation. In addition, a final grade of “C” or better must be earned in all courses with CIV, GME, MATH, CHE, and PHY prefixes and ENGR 101, ENGR 102, ENGR 211, ENGR 213, and ENGR 231. Students must also earn a grade of “C” or better in all courses listed as prerequisites for these courses.

Degree Requirements—Master of Science
The Master of Science in Civil Engineering requires completing 45 credit hours of graduate work. Both thesis and project options are available; students must complete 12 credits toward a thesis or 9 credits toward an approved project. Graduate course offerings currently emphasize the civil engineering disciplines of structural and transportation engineering.

Bachelor of Science in Civil Engineering

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>CIV 201</th>
<th>General Chemistry</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHE 204</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGR 101</td>
<td>Introduction to Engineering I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
<th>CHE 202</th>
<th>General Chemistry</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHE 205</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGR 102</td>
<td>Introduction to Engineering II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>CIV 112</th>
<th>Engineering Graphics</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATH 254N</td>
<td>Vector Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>CIV 223</th>
<th>Elementary Properties of Materials</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGR 211</td>
<td>Statics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 161</td>
<td>Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 225</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
<th>CIV 201</th>
<th>Sustainable Civil Engineering I</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGR 213</td>
<td>Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 221</td>
<td>Introduction to Computational Software</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social Science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>CIV 315</th>
<th>Principles of Environmental Engineering</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIV 328</td>
<td>Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CIV 358</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 231</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
<th>CIV 321</th>
<th>Soil Mechanics and Foundations</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIV 331</td>
<td>Reinforced Concrete Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CIV 361</td>
<td>Closed Conduit Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CIV 371</td>
<td>Introduction to Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>ENGR 355</th>
<th>Thermodynamics</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGR 236</td>
<td>Fundamentals of Electric Circuits</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CIV 401/ COM 401</td>
<td>Civil Engineering Project I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CIV 415</td>
<td>Civil Design Software Applications</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>CIV 402/ COM 402</th>
<th>Civil Engineering Project II</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHIL 331</td>
<td>Ethics in the Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

* Humanities courses may not be skill or performance based. Students must take either ANTH 335 The Built Environment or HIST 335 The Engineering Profession as one of their social science electives.

** Concurrent Degree in Environmental Sciences**

Civil Engineering students have the opportunity to earn concurrent degrees in Civil Engineering and Environmental Sciences. The additional degree requires up to 54 credits in Environmental Sciences courses, which can be taken concurrent to Civil Engineering courses or as an add-on year. The dual degree in Environmental Sciences places engineering projects in the context of environmental impacts and environmental regulations, and greatly increases job opportunities for OIT Civil Engineering graduates. The purpose
of the concurrent programs is to challenge motivated students to become even better prepared for the engineering and environmental job markets. To obtain both degrees, students must complete the following listed courses along with the courses required for the Bachelor of Science in Civil Engineering.

BIO 111 Introduction to Environmental Sciences 4
BIO 211 Principles of Biology 4
BIO 212 Principles of Biology 4
BIO 213 Principles of Biology 4
BIO 225 Riparian Assessment Methods 1
BIO 327 General Ecology
or
BIO 337 Aquatic Ecology 4
BIO 434 Data Analysis Methods
or
MATH 362 Statistical Methods II 4
BIO 484 Sustainable Human Ecology 4
CHE 223 General Chemistry* 5
CHE 235 Streamwater Chemistry and Sampling 3
CHE 331 Organic Chemistry I 4
ENV 314 Environmental Regulation 3
GEOG 105 Physical Geography* 3
GME 134 Geographic Information Systems
Chemistry Technical emphasis elective** 4

* CHE 223 and GEOG 105 should be taken as Civil Engineering Math/Science electives.
** This technical emphasis elective must have a CHE prefix; different courses are offered every year.
Communication Department

Kevin Brown, Department Chair

Professors: M. Dyrud, L. Young

Associate Professors: K. Brown, J. Murray, D. Peterson, J. Puckett, M. Schnackenberg

Assistant Professors: V. Ball, J. Knight, M. Search

Instructors: J. Calvo, R. Schwartz

Degree Offered
Bachelor of Science in Communication Studies

The Bachelor of Science in Communication Studies allows students flexibility in designing a program that fits their life and career goals. Students choose core courses and electives from areas such as technical, organizational, and interpersonal communication. In addition, students build a career foundation by completing a focused sequence of electives.

Minors Offered
Human Communication
Technical Communication

Certificate Offered
Dispute Resolution

Career Opportunities
The Communication Studies Program prepares students for careers in areas such as technical communication, organizational communication, new communication technologies, education, human resources, project management, public relations, sales, and mediation.

General Education Courses
To ensure that OIT’s graduates are skilled communicators, the Communication Department provides writing, speech, and communication courses to satisfy general education requirements. Students in other majors should consult the general education and degree requirements in their major departments.

Student Preparation
All students who plan to study at OIT should enroll in writing and speech classes during their high school years to better benefit from the university’s communication courses. Students applying to the Communication Studies Program should have especially strong reading and writing skills. It is important to have a well-rounded college-preparation background, including courses in math, sciences, and general education.

Degree Requirements
The Bachelor of Science in Communication Studies requires 184 credits. All major courses, general education communication courses, and focused sequence of electives courses must be completed with a grade of “C” or higher.

Bachelor of Science in Communication Studies

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year Fall
COM 104 Introduction to Communication 3
COM 115 Communication 3
COM 225 Interpersonal Communication 3
PSY 201 Psychology 3
WRI 121 English Composition 3
Total 15

Freshman Year Winter
COM 105 Introduction to Communication Theory 3
HUM 125 Introduction to Technology, Society and Values 3
PSY 202 Psychology 3
WRI 122 English Composition 3
Total 15

Freshman Year Spring
COM 106 Introduction to Communication Research 3
MATH 105 Colloge Mathematics or MATH 111 College Algebra or MATH 243 Introductory Statistics 3
PSY 203 Psychology 3
SPE 111 Fundamentals of Speech 3
Total 16

Sophomore Year Fall
JOUR 211 Publications—Student Newspaper 3
SPE 321 Small Group and Team Communication 3
WRI 227 Technical Report Writing 3
Laboratory Science elective 4
Elective 3
Total 16

Sophomore Year Winter
COM 276 Democracy and Media 3
Focused Sequence elective* 3
Focused Sequence elective* 3
Laboratory Science/Math elective 4
Elective 3
Total 16

Sophomore Year Spring
COM 205 Intercultural Communication 3
COM 237 Introduction to Visual Communication 3
COM 255 Communication Ethics 3
Focused Sequence elective* 3
Laboratory Science/Math elective 4
Total 16

Junior Year Fall
COM 326 Communication Research 3
ECO 202N Principles of Economics, Microeconomics 3
Focused Sequence elective* 3
Focused Sequence elective* 3
Major elective** 3
Total 15

Junior Year Winter
COM 345 Organizational Communication I 3
Rhetorical Theory and Application 3
Focused Sequence elective* 3
Major elective (upper-division)** 3
Major elective (upper-division)** 3
Total 15

Junior Year Spring
Focused Sequence elective* 3
Humanities elective 3
Major elective** 3
Major elective (upper-division)** 3
Major elective (upper-division)** 3
Total 15

Senior Year Fall
COM 421 Senior Project I*** 3
Focused Sequence elective**** 3
Elective (upper-division) 3
Elective (upper-division) 3
Elective 3
Total 15

Senior Year Winter
COM 422 Senior Project II*** 3
Business elective 3
Focused Sequence elective (upper-division)** 3
Social Science elective (upper-division) 3
Elective (upper-division) 3
Total 15
Senior Year

Spring

COM 423 Senior Project III*** 3
Focused Sequence elective (upper-division)* 3
Social Science elective (upper-division) 3
Social Science elective (upper-division) 3
Elective 3

or

COM 420 Externship*** 15

Total 15

* Chosen by students from a list of focused sequence of electives and developed in consultation with their advisors. The focused sequence totals 30 units of the student's choice; three credits must be upper-division.

** Chosen by students from a list of Communication, Organizational Communication, and Technical Communication electives (six credits required of each; minimum of 12 credits upper-division; minimum one upper-division writing course which meets general education Communication requirements.)

*** During the senior year, students will complete a capstone project, either a senior project or externship, in which they apply and integrate the skills gained in their courses. The senior project will be completed under the supervision of a faculty advisor and will span the academic year. Externships will be concentrated in one or more terms and will require supervision of a faculty advisor.

**** For senior project students, this focused sequence elective must be upper-division.

Curriculum notes: To earn the Bachelor of Science degree, students must complete 36 credits in mathematics and science or 45 credits in mathematics, science, and social science. Students must also complete 60 credits of upper-division courses.

There is no guarantee of externships for Communication Studies majors. The best externship experiences are often those identified and arranged by students.

Major Elective Courses

Students will select electives from three categories—Communication, Organizational Communication and Technical Communication—and include two courses (6 credits) from each category, for a total of 18 required credits. A minimum of 12 credits must be upper-division. Please note that some electives require prerequisites.

Communication (6 credits)

COM 215 Creativity in Communication
COM 216 Mastery of Grammar and Punctuation
COM 226 Nonverbal Communication
COM 248 Digital Media Production
COM 320 Advanced Intercultural Communication
COM 358 Communication and the Law
COM 425 Mediation
COM 426 Mediation Practicum
JOUR 311 Advanced Publications—Student Newspaper
SPE 314 Argumentation
WRI 123 English Composition
WRI 305 Writing for the Marketplace
WRI 328 Technical Journalism

Organizational Communication (6 credits)

COM 256 Public Relations
COM 347 Negotiation and Conflict Resolution
COM 348 Facilitation
COM 347 Communication Training and Development
COM 445 Organizational Communication II
COM 446 Communication and Leadership

Technical Communication (6 credits)

COM 365 Electronic Communication and Society
WRI 214 Business Correspondence
WRI 327 Advanced Technical Writing
WRI 350 Documentation Development
WRI 410 Proposal and Grant Writing
WRI 415 Technical Editing
WRI 420 Document Design

Human Communication Minor

The Human Communication Minor supplements OIT technical and applied science degrees and provides advanced training in communication skills. The minor offers courses in the analysis and practice of human communication in a variety of areas including interpersonal, intercultural, health, nonverbal and electronic communication. In addition, the minor allows students to practice conflict resolution, negotiation strategies, ethical communication and rhetorical analysis. Students who have performed well in general education communication courses are encouraged to enroll in this minor. For further information on enrollment, contact a member of the Communication Department or the Communication Department chair.

Career Opportunities

The Human Communication Minor enhances students' employability and career flexibility. Many employers in many industries seek employees who can work effectively on multi-disciplinary teams, communicate in many (including international) contexts, understand and resolve conflict in the workplace and analyze and create effective messages in a variety of settings.

Requirements of the Human Communication Minor

SPE 321 Small Group and Team Communication
COM 205 Intercultural Communication
COM 225 Interpersonal Communication

In addition, students will select THREE from the following list of courses:

COM 226 Nonverbal Communication
COM 301 Rhetorical Theory and Application
COM 320 Advanced Intercultural Communication
PHIL 331 Ethics in the Professions
COM 346 Health Communication
COM 347 Negotiation and Conflict Resolution
COM 365 Electronic Communication and Society

Technical Communication Minor

The Technical Communication Minor supplements OIT technical degrees and provides advanced training and experience in communication skills. The minor offers specialized communication courses in such varied areas as proposal and grant writing, documentation development, and technical editing.

Students who have performed above-average work in their lower-division communication courses are encouraged to enroll in the program. For further information on enrollment, contact any Communication Department faculty member.
Even if students choose not to work as technical writers or editors, the Technical Communication Minor may increase job opportunities and professional advancement.

Requirements of the Minor
In addition to the general education requirements in communication, Technical Communication Minor students take four upper-division courses (12 units). Students take two required core courses and choose two electives from the list below. Students must earn a “C” or better in all courses to complete the minor.

Required Courses
- COM 301 Rhetorical Theory and Application
- WRI 328 Technical Journalism

Elective Courses
- COM 365 Electronic Communication and Society
- COM 415 Developing Effective Multimedia-based Presentations
- WRI 350 Documentation Development
- WRI 410 Proposal and Grant Writing
- WRI 415 Technical Editing
- WRI 420 Document Design

Dispute Resolution Certificate
The Dispute Resolution Certificate provides students with a thorough foundation of communication courses related to dispute resolution. The program culminates in specialized courses: negotiation, facilitation, and mediation, giving students expertise in the field. A practicum in mediation offers practical experience in community mediation and guarantees competence of students completing the certificate. This certificate provides students with both the theoretical background and the practical experience to effectively resolve conflicts in a variety of contexts.

Prerequisite or Co-requisite Classes
- SPE 111 Fundamentals of Speech 3
- WRI 121 English Composition 3

Program Courses
- COM 205 Intercultural Communication 3
- COM 225 Interpersonal Communication 3
- COM 226 Nonverbal Communication 3
- COM 345 Organizational Communication I 3
- COM 347 Negotiation and Conflict Resolution 3
- COM 348 Facilitation 3
- COM 425 Mediation 3
- COM 426 Mediation Practicum 3
- SPE 321 Small Group and Team Communication 3
Computer Systems Engineering Technology Department

Randal Albert, Department Chair
Jay Bockelman, Portland Operations Program Director, Software Engineering Technology
Todd Breedlove, Program Director, Software Engineering Technology
Doug Lynn, Program Director, Computer Engineering Technology
Jim Long, Program Director, Embedded Systems Engineering Technology
Sherry Yang, Curriculum Coordinator, Software Engineering Technology
Phong Nguyen, Curriculum Coordinator, Computer Engineering Technology

Professors: R. Albert, J. Bockelman, T. Breedlove, R. Carestia, C. Caldwell, C. Kansaku, D. Metzler, S. Yang

Associate Professors: J. Long, D. Lynn, P. Nguyen

Degrees Offered
Bachelor of Science in Computer Engineering Technology
Bachelor of Science in Software Engineering Technology
Bachelor of Science in Embedded Systems Engineering Technology
Associate of Engineering in Computer Engineering Technology
Associate of Engineering in Software Engineering Technology

Common First-Year Curriculum
The Bachelor of Science in Computer Engineering Technology, the Bachelor of Science in Software Engineering Technology, the Bachelor of Science in Embedded Systems Engineering Technology, the Associate of Engineering in Computer Engineering Technology and the Associate of Engineering in Software Engineering Technology, all share a common first-year curriculum.

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year
Fall
CST 102 Introduction to Computer Systems 3
CST 162 Introduction to Digital Logic 4
MATH 111 College Algebra 4
PSY 201 Psychology 3
WRI 121 English Composition 3
Total 17

Winter
CST 116 C++ Programming I 4
CST 130 Computer Organization 3
MATH 112 Trigonometry 4
WRI 122 English Composition 3
Humanities elective 3
Total 17

Spring
CST 105 Introduction to Computer Systems III 1
CST 126 C++ Programming II 4
CST 131 Computer Architecture 3
MATH 251 Differential Calculus 4
SPE 111 Fundamentals of Speech 3
Total 15

Computer Engineering Technology

Degrees Offered
Bachelor of Science in Computer Engineering Technology
Associate of Engineering in Computer Engineering Technology

Bachelor of Science and Associate of Engineering Degrees
All students who complete the curriculum requirements in Computer Engineering Technology will be knowledgeable in the theory and applications of both computer hardware and software.

Required Student Equipment
Successful completion of this degree requires intensive, hands-on use of computers. Therefore, all students are required to own their own computer. To ensure compatibility with campus-wide computers and networks, students should consult a department faculty member for a specification sheet. Financial aid may be available to help defray the cost of this equipment. Please consult the Financial Aid Office at OIT.

Career Opportunities
Work in the field of computer engineering technology includes: application specific integrated circuit development, firmware development, embedded systems design, software development, testing and applications of technology.

The associate's degree curriculum gives the student a strong foundation in both hardware and software aspects of computing, while also furnishing a solid background in general education subjects including mathematics, physics and communication. The associate degree graduate qualifies as a technician who is productive immediately upon entering the work force. It also provides a way for students who obtain degrees in related disciplines to add breadth to their education.

The bachelor's curriculum goes beyond the associate's degree curriculum providing the greater depth and breadth of technical capability necessary for an engineering technologist. The graduate is qualified to assume a responsible position in business or industry. Graduates may be responsible for the development, use and the maintenance of computing systems, and for the supervision of personnel.

New careers are constantly evolving in both the hardware and software branches of this field. A diversified study allows the graduate to quickly adapt to changing market conditions.
Curriculum Mission and Objectives

The mission of the Computer Engineering Technology (CET) Degree program in the Computer Systems Engineering Technology (CSET) Department at Oregon Institute of Technology is to provide an excellent education incorporating industry-relevant, applied laboratory-based design and analysis to our students. The program is to serve a constituency consisting of its Alumni, employers in the high-technology industry and the members of our IAB. Major components of the CET program’s mission in the CSET Department are to:

• educate computer engineering technology students to meet current and future industrial challenges;
• promote a sense of scholarship, leadership and professional service among our graduates;
• enable students to create, develop, and disseminate knowledge for the applied engineering environment;
• expose students to a cross-disciplinary educational program; and
• provide high tech industry employers with graduates in the computer engineering technology profession, a profession which is increasingly being driven by advances in technology.

CET Bachelor of Science Program Educational Objectives

Alumni of the Computer Engineering Technology (CET) Bachelor Degree program may be employed in a wide range of high tech industries from industrial manufacturing to consumer electronics. Alumni may be involved in product testing and qualification, customer support, sales, or public relations.

1. Alumni will demonstrate technical competence through success in computer engineering technician positions.
2. Alumni will demonstrate competencies in communication and teamwork skills through positive contributions to team based engineering projects.
3. Alumni will develop professionally, pursue continued learning and practice responsibly and ethically.

According to current statistics, one third of students who obtain the CET Associate degree also obtain a bachelor degree in a related discipline, most often a bachelor degree in Software. In this case, the Associate degree adds breadth to their education. Alumni in this category would be expected to perform at a level consistent with the bachelor degree program educational objectives.

Cooperative Field Experience

The cooperative program includes work experience during the junior and senior years. The co-op period is an employment arrangement with an employer in the area of the student’s major field with normal salary and academic credit. These arrangements are made on an individual basis and the student is under no obligation to accept permanent employment with any previous co-op employer.

A student must have junior standing in Computer Engineering Technology to be considered for this program.

Accreditation

The Computer Engineering Technology Programs are accredited by the Technology Accreditation Commission (TAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Degree Requirements

Associate of engineering technology degree students must complete 96 credit hours as prescribed by the curriculum outline. The Bachelor of Science in Computer Engineering Technology degree requires 91 additional credit hours, for a total of 187 credits, as prescribed by the curriculum outline.

Bachelor of Science in Computer Engineering Technology

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST 102</td>
<td>CST 116</td>
</tr>
<tr>
<td>Introduction to Computer Systems</td>
<td>C++ Programming I</td>
</tr>
<tr>
<td>CST 162</td>
<td>CST 130</td>
</tr>
<tr>
<td>Introduction to Digital Logic</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>MATH 111</td>
<td>MATH 112</td>
</tr>
<tr>
<td>College Algebra</td>
<td>Trigonometry</td>
</tr>
<tr>
<td>PSY 201</td>
<td>WRI 122</td>
</tr>
<tr>
<td>Psychology</td>
<td>English Composition</td>
</tr>
<tr>
<td>WRI 121</td>
<td>Humanities elective</td>
</tr>
<tr>
<td>English Composition</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST 105</td>
</tr>
<tr>
<td>Introduction to Computer Systems III</td>
</tr>
<tr>
<td>CST 126</td>
</tr>
<tr>
<td>C++ Programming II</td>
</tr>
<tr>
<td>CST 131</td>
</tr>
<tr>
<td>Computer Architecture</td>
</tr>
<tr>
<td>MATH 251</td>
</tr>
<tr>
<td>Differential Calculus</td>
</tr>
<tr>
<td>SPE 111</td>
</tr>
<tr>
<td>Fundamentals of Speech</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Associate of Engineering in Computer Engineering Technology

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>CST 133</th>
<th>Digital Electronics II – Sequential Logic with HDL</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 250</td>
<td>Computer Assembly Language</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Winter</th>
<th>CST 204</th>
<th>Introduction to Microcontrollers</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 231</td>
<td>Computer Design with Programmable Logic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 232</td>
<td>Computer Design with Programmable Logic Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EE 221</td>
<td>Circuits I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 254N</td>
<td>Vector Calculus I & II</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>CST 321</th>
<th>Introduction to Microprocessors</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 335</td>
<td>I/O Device Interfacing Techniques</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 371</td>
<td>Embedded Systems Development I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Winter</th>
<th>CST 331</th>
<th>Microprocessor Peripheral Interfaces</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 372</td>
<td>Embedded Systems Development II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 321</td>
<td>Electronics I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Spring</th>
<th>CST 351</th>
<th>Advanced PLD Circuits</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 373</td>
<td>Embedded Systems Development III</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHY 223</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>BUS 304</th>
<th>Engineering Management</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 344</td>
<td>Intermediate Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 441</td>
<td>Logic Synthesis with VDHL+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Winter</th>
<th>CST 418</th>
<th>Data Communications and Networks</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 442</td>
<td>Advanced Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 451</td>
<td>ASIC Design using FPGAs+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MGT 345</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Spring</th>
<th>ANTH 452</th>
<th>Globalization</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 461</td>
<td>Advanced Topics in VLSI Design+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 464</td>
<td>RISC-Based Microprocessor Systems</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

* Technical elective: CST 136, CST 345, CST 415, or CST 407.

** Electives: MATH 253N or MATH 465. MATH 341 or MATH 321 are also acceptable provided the student earns a total of 36 credits in Math and Science.

* OR Senior Project: CST 334(1), CST 412(3), CST 422(3), CST 452(2)

Concurrent Degree

The CSET Department provides the opportunity for the interested student to earn a bachelor’s degree in computer engineering technology and software engineering technology concurrently. Such concurrent degree holders are highly sought after in industry since they know and understand both the hardware and software aspects of computers. The purpose of the concurrent CET/SET Degree Program is to challenge the brightest and most motivated students to become even better prepared for the job market, extending their time in college by an additional year. To obtain both degrees, students must complete the following listed courses along with the courses required for the Bachelor of Science degree in Computer Engineering Technology with the exception of WRI 327, the CST elective and the MATH elective.

<table>
<thead>
<tr>
<th>Fall</th>
<th>CST 136</th>
<th>Object-Oriented Programming with C++</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CST 211</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 229</td>
<td>Introduction to Grammars</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 236</td>
<td>Software Systems Testing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 238</td>
<td>Graphical User Interface Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 276</td>
<td>Software Design Patterns</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 320</td>
<td>Compiler Methods</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 324</td>
<td>Database Systems and Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 334</td>
<td>Project Proposal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CST 352</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CST 412</td>
<td>Senior Development Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 422</td>
<td>Senior Development Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CST 432</td>
<td>Senior Development Project</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CST 415</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CST Technical electives*</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH elective**</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>CST 465</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WRI 350</td>
<td>Documentation Development</td>
<td>3</td>
</tr>
</tbody>
</table>

* One elective must be a CET hardware technical elective—a Hardware CST 407, CST 345 or CST 456.

* One elective must be a SET software technical elective—CST 346, CST 356, CST 405, a Software CST 407, CST 425, CST 426, CST 462, or CST 466.

** MATH 321, MATH 322, MATH 327, MATH 341, MATH 342, or MATH 451.
Embedded Systems Engineering Technology

Degree Offered
Bachelor of Science in Embedded Systems Engineering Technology

Required Student Equipment
Successful completion of this degree requires intensive, hands-on use of computers. Therefore, all students are required to own their own computer. To ensure compatibility with campus-wide computers and networks, students should consult a department faculty member for a specification sheet. Financial aid may be available to help defray the cost of this equipment. Please consult the Financial Aid Office at OIT.

Career Opportunities
The Department of Computer Systems Engineering Technology offers a Bachelor of Science degree in Embedded Systems Engineering Technology (ESET) designed to build and enhance student’s knowledge and skills in this high demand field. Embedded systems play an important role in society. They are the products that contain computing capabilities which are found throughout a wide spectrum of applications. Examples of embedded systems can be found in areas ranging from the entertainment industry to office systems; health care to telecommunications. Embedded systems encompass such diverse products as interactive multimedia, printers, medical equipment, avionics equipment, kitchen appliances, mobile phones, and automotive engine management units. Engineering and technological challenges abound in the design and development of such innovative products due to the high level integration of hardware and software. As they become more complex and time to market shrinks there is increasing need for skill and creativity on the part of the Embedded System Engineering Technology graduate.

If you want to:
• develop skills in design and implementation of firmware for embedded systems,
• expand knowledge and apply new ideas in practical design,
• gain hands-on experience in embedded system design,
• bridge the gap between software and hardware design,
• enhance your career opportunities in a variety of high demand areas of industrial applications, then the Embedded Systems Engineering Technology Program is the place for you.

Objective of the Curriculum
The goal of the Embedded Systems Program is to prepare students with the skills demanded by real-world industrial applications. Key to this process is the direct involvement of the embedded systems industries. Specific areas of preparation include:
• Embedded systems design methods—methods and techniques specific to the creation of an embedded system that integrates both software and hardware to fulfill a set of requirements.
• Software engineering methods—methods specific to development of software for embedded systems, including implementation, maintenance and testing.
• Systems software development—device driver development, multiprocessing control systems, and the software necessary to directly access and manipulate hardware.
• Architectural elements of embedded systems—methods and techniques for designing and implementing hardware components for embedded systems such as application-specific integrated circuits and System-On-a-Chip (SoC) technology.
• Real-time high-reliability and high-availability processing—methods and techniques necessary for understanding, evaluating and addressing quality attributes most often associated with embedded systems such as real-time deadlines, high availability, survivability, and safety.
• Data communications—methods and techniques for developing distributed systems within embedded environments that use physical or wireless networking.

Cooperative Field Experience
The cooperative program includes work experience during the junior and senior years. The co-op period is an employment arrangement with an employer in the area of the student's major field with normal salary and academic credit. These arrangements are made on an individual basis and the student is under no obligation to accept permanent employment with any previous co-op employer.

Degree Requirements
The Bachelor of Science in Embedded Systems Engineering Technology requires 194 credit hours as prescribed by the curriculum outline.

Bachelor of Science in Embedded Systems Engineering Technology

Curriculum
Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 102</td>
<td>Introduction to Computer Systems</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 162</td>
<td>Introduction to Digital Logic</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 116</td>
<td>C++ Programming I</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 130</td>
<td>Computer Organization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 105</td>
<td>Introduction to Computer Systems III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 126</td>
<td>C++ Programming II</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST 131</td>
<td>Computer Architecture</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Software Engineering Technology

Degrees Offered
Bachelor of Science in Software Engineering Technology
Associate of Engineering in Software Engineering Technology

Students who complete the curriculum requirements in Software Engineering Technology will be qualified and knowledgeable in the establishment and use of sound engineering principles (methods) in order to create software of all types that is reliable and works on real machines.

Required Student Equipment
Successful completion of this degree requires intensive, hands-on use of computers. Therefore, all students are required to own their own computer. To ensure compatibility with campus-wide computers and networks, students should consult a department faculty member for a specification sheet. Financial aid may be available to help defray the cost of this equipment. Please consult the Financial Aid Office at OIT.

Career Opportunities
Bachelor of Science in Software Engineering Technology degree graduates find employment as software engineers, systems engineers, systems analysts, programmer/analysts, researchers and assistants, consultants, customer engineers, etc., responsible for the application, design, development, and implementation of software in all areas of industry, government, and education.

Software engineering technologists’ career paths will be many and varied. They may concentrate on hardware-support activities such as new design/development, testing, customer service and the like. They may concentrate on software specification, design, construction and testing through implementation and maintenance.

Graduates may get involved with administrative or project management by beginning as a member of an applications development team and progressing into management. They may pursue careers in product development, marketing, sales, design, and support. Students completing the requirements for the Associate of Engineering degree should consider themselves as entry-level trainees in the careers mentioned.

High School Preparation
Coursework in computer science, mathematics, and physical science will aid students in their progress in this program.

Bachelor Program Mission
The mission of the Software Engineering Technology (SET) Bachelor’s Degree Program within Computer Systems Engineering Technology (CSET) Department at Oregon Institute of Technology is to prepare our students for productive careers in industry and government by providing an excellent education incorporating industry-relevant, applied laboratory-based instruction in both the theory and application of software engineering. The program is to serve a constituency consisting of our alumni, our employers and our Industrial Advisory Board. Major components of the SET Program’s mission in the CSET Department are:

- To educate a new generation of Software Engineering Technology students to meet current and future industrial challenges and emerging software trends;
- To promote a sense of scholarship, leadership and professional service among our graduates;
- To enable our students to create, develop, apply and disseminate knowledge within the software development environment;
- To expose our students to cross-disciplinary educational programs;
- To provide government and high tech industry employers with graduates in software engineering and related professions.

Bachelor Program Educational Objectives
The Program Educational Objectives of OIT’s Software Engineering Technology Program are to produce graduates that:

- Use their knowledge of engineering to creatively and innovatively solve difficult computer systems problems;
• Regularly engage in exploring, learning and applying state-of-the-art hardware and software technologies to the solution of computer systems problems;
• Will be an effective software development team member that contributes innovative software design solutions to the resolution of business, scientific or government computer systems problems;
• Will communicate effectively and successfully, both individually and within multi-disciplinary teams.

Cooperative Field Experience

The cooperative program includes work experience usually during the junior and senior years. The co-op period would be an employment arrangement with an employer in the area of the student's major field with normal salary and academic credit. These arrangements are made on an individual basis, and the student is under no obligation to accept permanent employment with any previous cooperating employer. A student must be ready to enter the sophomore year in Software Engineering Technology to be considered for this program.

Accreditation

The Software Engineering Technology Programs are accredited by the Technology Accreditation Commission (TAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Degree Requirements

Associate of Engineering Technology degree students must complete 98 credit hours as prescribed by the curriculum outline. The Bachelor of Science in Software Engineering Technology degree requires 186 credit hours as prescribed by the curriculum outline.

Bachelor of Science in Software Engineering Technology

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year Fall
CST 105 Introduction to Computer Systems 3
CST 126 C++ Programming II 4
CST 131 Computer Architecture 3
MATH 251 Differential Calculus 4
SPE 111 Fundamentals of Speech 3
Total 15

Sophomore Year Fall
CST 136 Object-Oriented Programming With C++ 4
CST 250 Computer Assembly Language 4
MATH 252 Integral Calculus 4
WRI 227 Technical Report Writing 3
Total 15

Sophomore Year Winter
CST 211 Data Structures 4
CST 240 UNIX 3
CST 276 Software Design Patterns 4
MATH 254N Vector Calculus I 4
Total 15

Junior Year Fall
CST 229 Introduction to Grammars 3
CST 316 Software Process Management 4
CST 324 Database Systems and Design 4
PHY 221 General Physics with Calculus 4
SPE 321 Small Group and Team Communication 3
Total 18

Junior Year Winter
CST 320 Compiler Methods 4
CST 326 Software Design and Implementation I 4
CST 327 Discrete Mathematics 4
PHY 222 General Physics with Calculus 4
WRI 350 Documentation Development 3
Total 15

Senior Year Fall
BUS 304 Engineering Management 3
CST 412 Senior Development Project 3
CST 415 Computer Networks 4
Total 16

Senior Year Winter
CST 422 Senior Development Project 3
MATH 465 Mathematical Statistics 4
Humanities elective 3
Social Science elective 3
Technical elective* 3
Total 16

Associate Program Educational Objectives

The Program Educational Objectives of OIT’s Software Engineering Technology program are to produce graduates that:
• Assist in solving computer systems problems using their knowledge of computer programming;
• Regularly engage in learning and applying state-of-the-art hardware and software technologies to the solution of computer systems problems;
• Will communicate effectively and successfully in the workplace.

Associate Program Mission

The mission of the Software Engineering Technology (SET) Associate Degree program within the Computer Systems Engineering Technology (CSET) Department at Oregon Institute of Technology is to prepare our students for entry level careers in the software industry and government by providing applied laboratory based instruction. The program is to serve a constituency consisting of our alumni, our employers and our Industrial Advisory Board. Major components of the SET program’s mission in the CSET Department are:
• To provide a new generation of Software Engineering Technology students with a solid background in computer programming;
• To enable our students to create, develop and apply knowledge within a technical software environment;
• To provide government and high tech industry employers with entry level graduates in computer programming and related professions.

Curriculum

Freshman Year Fall
CST 102 Introduction to Computer Systems 3
CST 162 Introduction to Digital Logic 4
MATH 111 College Algebra 4
PSY 201 Psychology 3
WRI 121 English Composition 3
Total 17

Freshman Year Winter
CST 116 C++ Programming I 4
CST 130 Computer Organization 3
MATH 112 Trigonometry 4
WRI 122 English Composition 3
Total 17

Sophomore Year Fall
CST 105 Introduction to Computer Systems 3
CST 126 C++ Programming II 4
CST 131 Computer Architecture 3
MATH 251 Differential Calculus 4
SPE 111 Fundamentals of Speech 3
Total 15

Sophomore Year Winter
CST 136 Object-Oriented Programming With C++ 4
CST 250 Computer Assembly Language 4
MATH 252 Integral Calculus 4
WRI 227 Technical Report Writing 3
Total 15

Sophomore Year Winter
CST 211 Data Structures 4
CST 240 UNIX 3
CST 276 Software Design Patterns 4
MATH 254N Vector Calculus I 4
Total 15

Junior Year Fall
CST 229 Introduction to Grammars 3
CST 316 Software Process Management 4
CST 324 Database Systems and Design 4
PHY 221 General Physics with Calculus 4
SPE 321 Small Group and Team Communication 3
Total 18

Junior Year Winter
CST 320 Compiler Methods 4
CST 326 Software Design and Implementation I 4
CST 327 Discrete Mathematics 4
PHY 222 General Physics with Calculus 4
WRI 350 Documentation Development 3
Total 15

Senior Year Fall
BUS 304 Engineering Management 3
CST 412 Senior Development Project 3
CST 415 Computer Networks 4
Total 16

Senior Year Winter
CST 422 Senior Development Project 3
MATH 465 Mathematical Statistics 4
Humanities elective 3
Social Science elective 3
Technical elective* 3
Total 16
Associate of Engineering in Software Engineering Technology

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year
- Fall
 - CST 102 Introduction to Computer Systems: 3
 - CST 162 Introduction to Digital Logic: 4
 - MATH 111 College Algebra: 4
 - WRI 121 English Composition: 3
- Total: 17

Sophomore Year
- Fall
 - CST 136 Object-Oriented Programming
 - With C++: 4
 - MATH 252 Integral Calculus: 4
 - WRI 227 Technical Report Writing: 3
 - Social Science elective: 3
 - Technical elective*: 3
- Total: 17

Senior Year
- Spring
 - ANTH 452 Globalization: 3
 - CST 432 Senior Development Project: 2
 - MGT 345 Engineering Economy: 3
 - Humanities elective: 3
 - Technical elective*: 3
- Total: 14

* Three technical elective courses (two upper-division) chosen from the following list are required. Two electives must also be CST courses (excluding CST 390 and CST 490).

The acceptable courses are: CST 204 Introduction to Microcontrollers • CST 311 Advanced Data Structures and Algorithm Analysis • CST 328 Computer Graphics • CST 338 Computer Modeling and Simulation • CST 340 Advanced UNIX • CST 405 Directed Study • CST 407 Seminar • CST 418 Data Communications and Networks • CST 420 Effective C++ and STL • CST 425 Advanced Networks and Telecommunications • CST 426 Introduction to Artificial Intelligence • CST 436 Robotics • CST 442 Advanced Computer Architecture • CST 462 Real-Time Operating Systems • CST 490 Co-op Field Practice • MATH 253N Sequences and Series • MATH 321 Applied Differential Equations I • MATH 322 Applied Differential Equations II • MATH 341 Linear Algebra I • MATH 342 Linear Algebra II • MATH 451 Numerical Methods I

* See your advisor for acceptable elective classes.
Dental Hygiene Department

Janita Cope, Department Chair

Professor: J. Schultz

Associate Professor: J. Cope

Assistant Professors: C. Devens, P. Gates, S. Hopper, V. Points

Instructors: H. Denton, E. Gordon

Degrees Offered
Bachelor of Science in Dental Hygiene
Associate of Applied Science in Dental Hygiene

A Bachelor of Science in Dental Hygiene is offered on the OIT Klamath Falls campus and on the Chemeketa Community College campus in Salem. An Associate of Applied Science in Dental Hygiene is offered in La Grande.

The Dental Hygiene Programs prepare students for entry into the dental hygiene profession. Upon successful completion of the program, the graduate is eligible to apply for examination and state licensure.

Accreditation
The dental hygiene curriculum is fully accredited by the American Dental Association Commission on Dental Accreditation, a specialized accrediting body recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education. The program is recognized by the Oregon Board of Dentistry, Oregon Dental Association and the Oregon Dental Hygienists' Association.

Program Purpose
The purpose of each program is to prepare the student for entry into the profession as a clinical dental hygienist. The Bachelor of Science Program explores expanded careers in dental hygiene in the areas of public health, research, education and administration. The bachelor degree graduate will be prepared for entry into master degree programs in dental hygiene and other related programs.

Career Opportunities
Dental hygienists are most commonly employed in private dental offices but may provide oral health care services in hospitals, nursing homes and schools. A bachelor’s degree provides additional preparation for career options such as research, public health, education, or administration. Employment opportunities exist abroad with governmental agencies, companies or in private practice.

Student Preparation
A science background is beneficial to those entering any health sciences profession. It is recommended that the student considering a career in dental hygiene take a college bound course of study in high school that includes algebra, chemistry, and biology or human anatomy and physiology.

Admissions Procedures
Any student who meets the general admissions requirements may enroll in Pre-Dental Hygiene courses (freshman year). A limited number of seats are available in the professional courses (sophomore, junior, and senior years). Students are selected to enter the professional program through an application process.

The application deadline is April 15 of the calendar year of enrollment. To be eligible for admission into the Dental Hygiene Program the following minimum eligibility requirements must be met:

1. Applicants must have on file with the OIT Office of Admissions an official Application for Admission to OIT, accompanied by a $50 non-refundable fee and official transcripts of each college or university attended. Admission to OIT is independent of admission to the Dental Hygiene Program. All applicants to OIT are admitted as pre-dental hygiene majors until acceptance into the dental hygiene program.

2. Applicants must have successfully completed or be in progress of completing all freshman pre-dental hygiene courses. Completion of Introduction to Dental Hygiene (DH 100 on campus or DHE 100 online) is required by the end of spring term. All other prerequisite (freshman) courses must be completed by the end of summer term.

3. Applicants must have a minimum cumulative 2.50 GPA in previous college work.

4. Applicants must submit a Dental Hygiene Application for Admission, related forms and $75 non-refundable application fee directly to the Dental Hygiene Department by April 15 of the calendar year of enrollment. Detailed information and forms can be found on the OIT Dental Hygiene Program web page, www.oit.edu/dentalhygiene.

Program Requirements
All students admitted to the Dental Hygiene Program will be required to purchase a specific laptop computer designated by the Dental Hygiene Department. The Department also requires students to purchase instruments for use in the program.

Bachelor of Science in Dental Hygiene

Curriculum
The following are required courses and recommended terms for students attending on the Klamath Falls campus. Please visit www.oit.edu/dentalhygiene for transfer information from other Oregon colleges and for recommended course sequencing for those attending on the Chemeketa Community College campus.

Pre-Dental Hygiene

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>2</td>
</tr>
<tr>
<td>BIO 231</td>
<td>4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>1</td>
</tr>
<tr>
<td>DH 100</td>
<td>2</td>
</tr>
<tr>
<td>MATH 111</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Freshman Year Winter

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 105</td>
<td>4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>4</td>
</tr>
<tr>
<td>CHE 102</td>
<td>3</td>
</tr>
<tr>
<td>CHE 105</td>
<td>1</td>
</tr>
<tr>
<td>SOC 204</td>
<td>3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>
Freshman Year
Spring
BIO 205 Nutrition 3
BIO 233 Human Anatomy and Physiology III 4
CHE 103 Elementary Chemistry 3
CHE 106 Elementary Chemistry Laboratory 1
SPE 111 Fundamentals of Speech 3
WRI 122 English Composition 3
Total 17

Sophomore Year
Fall
CHE 360 Clinical Pharmacology for the Health Professions 3
DH 221 Dental Hygiene Clinical Practice and Seminar I 4
DH 226 Head and Neck Anatomy 2
DH 240 Prevention I 3
DH 275 Dental Ethics 1
SPE 321 Small Group and Team Communication 3
Total 16

Senior Year
Fall
AHED 450 Instructor Methods 3
DH 372 International Externship (optional) 1
DH 422 Dental Hygiene Clinical Practice and Seminar VIII 5
DH 462 Restorative Dentistry II (optional) 2
DH 477 Dental Hygiene Research Methods II 3
Communication elective 3
Humanities elective 3
Total 16/19

Sophomore Year
Spring
DH 223 Dental Hygiene Clinical Practice and Seminar III 3
DH 242 Prevention II 3
DH 253 Oral Radiology II 2
DH 254 Introduction to Periodontology 1
DH 267 Emergency Procedures 3
DH 380 Community Dental Health I 2
Psychology elective 3
Total 17

Junior Year
Fall
BUS 317 Health Care Management 3
DH 321 Dental Hygiene Clinical Practice and Seminar IV 4
DH 340 Prevention IV 3
DH 354 Periodontology 3
DH 381 Community Dental Health II 2
Psychology elective 3
Total 18

Senior Year
Winter
DH 423 Dental Hygiene Clinical Practice and Seminar IX 5
DH 454 Dental Practice Management 3
DH 463 Restorative Dentistry III (optional) 2
DH 477 Dental Hygiene Research Methods III 2
Humanities elective 3
Psychology elective 3
Total 16/18

Graduation Requirements
All courses listed in the curriculum for the catalog year a student begins a program must be fulfilled. Total credits required for graduation are: Bachelor of Science degree, 197; Associate of Applied Science, 153.

A minimum cumulative grade point average (GPA) of 2.0 is required for graduation. Students must maintain a grade of “C” or better in all professional courses (DH and DHE), communication courses and clinical pharmacology (CHE 360) to continue in the program.

Associate of Applied Science in Dental Hygiene

Curriculum
Required courses and recommended terms during which they should be taken:

Pre-Dental Hygiene

Freshman Year
Fall
BIO 200 Medical Terminology 2
BIO 231 Human Anatomy and Physiology I 4
CHE 101 Elementary Chemistry 3
CHE 104 Elementary Chemistry Laboratory I 1
DHE 100 Introduction to Dental Hygiene I 2
MATH 105 College Mathematics 3
MATH 111 College Algebra 4
Total 16

Sophomore Year
Spring
CHE 360 Clinical Pharmacology for the Health Professions 3
DHE 205 Oral and Dental Anatomy 4
DHE 211 Principles of Dental Hygiene I 2
DHE 221 Dental Hygiene Clinical Practice I 3
DHE 252 Oral Radiology I 3
SPE 321 Small Group and Team Communication 3
Total 18

Professional Courses

Sophomore Year
Fall
DHE 212 Principles of Dental Hygiene II 3
DHE 222 Dental Hygiene Clinical Practice II 4
DHE 244 General and Oral Pathology 3
DHE 253 Oral Radiology II 2
DHE 275 Dental Ethics 2
DHE 282 Medical and Dental Emergency Procedures 3
Total 17

Sophomore Year
Spring
DHE 233 Dental Hygiene Clinical Practice III 4
DHE 234 Periodontology 3
DHE 261 Dental Health Education 3
DHE 344 Advanced General and Oral Pathology 3
Total 16
Admission Procedures

To satisfy residency requirements, 45 credit hours must be completed through OIT to meet OIT general education requirements and a minimum of 45 credit hours must be completed at OIT or through an online, Web-based distance-learning program.

Dental hygienists who have graduated with an associate’s degree from an accredited dental hygiene program may be eligible to apply to the bachelor’s degree completion program. OIT will make every effort to give maximum consideration to the transfer work presented at time of application. Typically, most professional and related science requirements are accepted. Additional coursework may be necessary to meet OIT general education requirements and a minimum of 45 credit hours must be completed through OIT to satisfy residency requirements.

Admission Procedures

1. Complete the Dental Hygiene Degree Completion Application. Enclose a check for $100 payable to Oregon Institute of Technology.

3. Mail your application, check, and copy of board results to the Distance Education Office.
4. Mail official transcripts from all colleges you have attended directly to the Distance Education Office. Transfer courses will be evaluated to determine course equivalency of professional, science, and general education courses.

To apply, go to www.oit.edu/dist, print the Admissions Application and Check Sheet, and submit all required information to the Distance Education Department.

Courses Granted for Licensure

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH 100</td>
<td>Introduction to Dental Hygiene</td>
<td>2</td>
</tr>
<tr>
<td>DH 226</td>
<td>Head and Neck Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>DH 237</td>
<td>Oral Histology and Embryology</td>
<td>2</td>
</tr>
<tr>
<td>DH 267</td>
<td>Emergency Procedures</td>
<td>3</td>
</tr>
<tr>
<td>DH 244</td>
<td>General and Oral Pathology</td>
<td>3</td>
</tr>
<tr>
<td>DH 221/222/223</td>
<td>Dental Hygiene Clinical Practice and Seminar I, II, and III</td>
<td>11</td>
</tr>
</tbody>
</table>

Additional required courses

<table>
<thead>
<tr>
<th>Transfer or OIT</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 105</td>
<td>Microbiology</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIO 205</td>
<td>Nutrition</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Anatomy and Physiology I</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Anatomy and Physiology II</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Anatomy and Physiology III</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHE 101/104</td>
<td>Elementary Chemistry/Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHE 102/105</td>
<td>Elementary Chemistry/Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHE 103/106</td>
<td>Elementary Chemistry/Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 105</td>
<td>College Algebra</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SOC 204</td>
<td>Introduction to Sociology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WRI 123</td>
<td>English Composition</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Graduation Requirements:

The following requirements must be met to earn a bachelor’s degree in dental hygiene from Oregon Institute of Technology:

- Transfer your dental hygiene professional courses.
- Complete general education courses required for a bachelor’s degree.
- Complete the bachelor’s degree completion courses.
- Complete 60 credits of upper-division (300-400 level) coursework. (You will be awarded some upper-division credit for your transferred professional courses.)
- Complete at least 45 credits from OIT.
- Maintain a grade “C” or better in all courses.
Electrical Engineering and Renewable Energy Department

Mateo Aboy, Department Chair

Cristina Crespo, Program Director, Electronics Engineering Technology in Portland

Robert Bass, Program Director, Renewable Energy Engineering in Portland

Jamie Zipay, Program Director, Renewable Energy Engineering in Klamath Falls

Bruce Barnes, Program Director, Electrical Engineering in Klamath Falls

Professor: J. Zipay

Associate Professors: M. Aboy, R. Bass, P. Dingman, S. Petrovic

Assistant Professors: B. Barnes, D. Clements, C. Crespo, C. Torres-Garibay, F. Rytokonen, T. Stevens

Degrees offered
Bachelor of Science in Electrical Engineering (Klamath Falls campus)
Bachelor of Science in Electronics Engineering Technology (Portland Campus)
Bachelor of Science in Renewable Energy Engineering (Klamath Falls and Portland campuses)
Master of Science in Renewable Energy Engineering (Portland campus)

Electrical Engineering

Degrees Offered
Bachelor of Science in Electrical Engineering (Klamath Falls)

Career Opportunities
Jobs for electrical engineers are some of the most prevalent worldwide in the discipline of engineering. This demand is forecast to continue. Consider the wide range of items that are produced by electrical and electron-ics engineers, including computers, digital cameras, cell phones, iPods, TVs, stereos, global positioning sensors, laser range finders, microwave ovens, night-vision sensors, electronic fuel injection, avionics, robotics, biomedical instruments, wireless telecommunications, and much more. An electrical engineer designs, builds, analyzes, tests, integrates, markets, and field services all of these products.

Electrical engineering at OIT is concerned with theory, concepts, and practices of applied electrical and electronics engineering. Emphasis is placed on the practical application of engineering knowledge. As a result, the electrical engineering graduate possesses a combination of theoretical and practical understanding and requires minimal on-the-job training. The OIT BSEE graduate is also well prepared to attend graduate school. Graduates of the Electrical Engineering Program fulfill a wide range of functions within industry. Bachelor degree graduates are currently placed in positions such as component and system design, field engineering, manufacturing engineering, sales or market engineering, test engineering, and quality control engineering.

Employers of electrical engineering graduates include research and development laboratories, electronic equipment manufacturers, public utilities, colleges and universities, government agencies, medical laboratories and hospitals, electronic equipment distributors, semiconductor companies, and automated electronic-controlled processing companies.

Objectives
The objectives of the Electrical Engineering Program are:
1. To provide graduates that posses the engineering design and laboratory skills needed in careers within broadband electrical, electronics, computer, semiconductor, optoelectronic, renewable energy and biomedical fields.
2. To provide graduates that are technically competent for careers in the field of electrical engineering. They will have the ability to solve engineering problems in new and emerging disciplines by applying principles of mathematics, science and engineering.
3. To provide graduates that posses the analytical skills, written and oral communication skills, critical thinking and problem-solving abilities so that they may enjoy both vertical and horizontal career mobility in engineering fields.
4. To provide graduates that appreciate the need of continuing education in electrical engineering, optoelectronics, biomedical engineering, and related disciplines after graduation and have an awareness of professional and ethical responsibilities of their career disciplines.

Student Preparation
Students entering the Electrical Engineering Program from high school should have a minimum of: 1) Two years of high-school algebra and one year of high-school geometry and trigonometry. 2) Two years of a physical science (physics, chemistry preferred). 3) Three years of English composition. Additional mathematics, science, English, electronics, and computer languages are very helpful.

Students entering the Electrical Engineering Program by transfer are requested to contact the department concerning transfer of technical coursework. Those community college students completing the electrical engineering transfer program should receive full credit for the first two years of EE courses. Those students with an Associate Degree in Electronics Engineering Technol-ogy will most likely have to take two or more “bridging” courses and EE 225 (Circuits III) in order to have all the lower-division requirements of the EE Program completed.

Accreditation
Oregon Institute of Technology is accredited by the Northwest Commission on Colleges and Universities, 8060 165th Ave. NE, Suite 100, Redmond, WA 98052-3981, an institutional accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S. Department of Education.

Degree Requirements
A rigorous curriculum in Electrical Engineering requires 183 term hours of credit, taking approximately four years to complete. Students in the EE Program must earn a
grade of “C” or better in all EE courses that are prerequisites for another EE course.

Bachelor of Science in Electrical Engineering

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

- Fall
 - CHE 201 General Chemistry 3
 - CHE 204 General Chemistry Laboratory 1
 - ENGR 101 Introduction to Engineering I 2
 - MATH 251 Differential Calculus 4
 - WRI 121 English Composition 3
 - Total 13

- Winter
 - CHE 202 General Chemistry* 3
 - CHE 205 General Chemistry Laboratory* 1
 - ENGR 102 Introduction to Engineering II 2
 - MATH 252 Integral Calculus 4
 - PHY 221 General Physics with Calculus 4
 - WRI 122 English Composition 3
 - Total 17

- Spring
 - EE 131 Digital Electronics I 4
 - MATH 254N Vector Calculus I 4
 - PHY 222 General Physics with Calculus 4
 - SPE 111 Fundamentals of Speech 3
 - Total 15

- Fall
 - EE 221 Circuits I 4
 - PHY 223 General Physics with Calculus 4
 - Social Science elective 3
 - Total 15

- Winter
 - CST 116 C++ Programming I 4
 - EE 223 Circuits II 4
 - MATH 321 Applied Differential Equations I 4
 - MATH 341 Linear Algebra I 3
 - Total 15

- Spring
 - EE 225 Circuits III 4
 - MATH 253N Sequences and Series 4
 - WRI 227 Technical Report Writing 3
 - Social Science elective 3
 - Total 17

Sophomore Year

- Fall
 - EE 321 Electronics I 5
 - EE 331 Digital System Design with HDL 4
 - EE 341 Electricity and Magnetism with Transmission Lines 4
 - MGT 345 Engineering Economy 3
 - Total 16

- Winter
 - EE 323 Electronics II 5
 - EE 333 Microcontroller Engineering 4
 - EE 343 Solid-State Electronic Devices 3
 - WRI 327 Advanced Technical Writing 3
 - Total 15

- Spring
 - EE 311 Signals and Systems 4
 - EE 325 Electronics III 5
 - EE 335 Advanced Microcontroller Engineering 3
 - Engineering elective** 3
 - Total 16

- Fall
 - EE 411 Senior Project I 2
 - EE 431 Digital Signal Processing 3
 - SPE 321 Small Group and Team Communication 3
 - Engineering elective** 3
 - Social Science elective 3
 - Total 14

- Winter
 - EE 412 Senior Project II 2
 - EE 423 CMOS Integrated-Circuit Design 5
 - MATH 465 Mathematical Statistics 4
 - Engineering elective** 3
 - Social Science elective 3
 - Total 17

- Spring
 - EE 401 Communication Systems 5
 - EE 413 Senior Project III 2
 - Humanities elective 3
 - Social Science elective 3
 - Total 13

Junior Year

- Fall
 - * Or advisor approved 4 credit Math/Science Elective.
 - ** Requires Advisor Approval

Engineering Electives for Specific Emphases within BSEE Curriculum

Students may choose from the following list for their 9 credits of engineering elective courses in a specific emphasis. Transfer students may use other courses to satisfy an engineering elective. All engineering electives require the approval of a student's academic advisor. All courses may not be offered every year.

Renewable Energy Emphasis

REE 243 Electrical Power 4
REE 412 Photovoltaic Systems 3
REE 413 Electrical Power Conversions Systems 3
Advisor Approved REE Courses 3/4

Electrical Power Emphasis

REE 243 Electrical Power 4
REE 453 Power System Analysis 3
REE 454 Power System Protection and Control 3
Advisor Approved REE Courses 3/4

General EE Electives

EE 307 Seminar 3/4
EE 407 Seminar 3/4
EE 419 Power Electronics 4
EE 421 Analog Integrated-Circuit Design 5
EE 425 Wireless Communication 4
EE 456 Control System Design 3

Bachelor of Science in Electrical Engineering (Post-Baccalaureate)

OIT Bachelor of Science in Electronics Engineering Technology graduates may complete 37 additional credits to receive a Bachelor of Science in Electrical Engineering (post-baccalaureate). Students who have completed an ABET accredited bachelor's in Electronics Engineering Technology from another institution must complete a minimum of 45 OIT credits to receive the BS in Electrical Engineering from OIT.

Mathematics and Science

- MATH 253N Series and Sequences 4
- MATH 341 Linear Algebra I 3
- MATH 465 Mathematical Statistics 4
- CHE 201 General Chemistry 3
- CHE 204 General Chemistry Laboratory 1

Required Electrical Engineering

- EE 341 Electricity and Magnetism with Transmission Lines 4
- EE 343 Solid-State Electronic Devices 3
- EE 431 Digital Signal Processing 3

Mathematics or Engineering Technical Elective

- Technical elective (MATH, EE, REE)** 3

Engineering Technical Electives

- Technical elective (EE, REE)* 3
- Technical elective (EE, REE)** 3
- Technical elective (EE, REE)* 3

Total if prior BSEE degree awarded by OIT

Additional credits needed for students who completed a BSEE degree from another institution:
- Technical elective (EE, REE)* 4
- Technical elective (EE, REE)* 4

Total

45

* Advisor approval required. Approved technical electives can be EE (Electrical Engineering) or REE (Renewable Energy Engineering) courses for students wanting a BSEE degree with an emphasis in Energy Engineering.
Electronics Engineering Technology

Degrees Offered
Bachelor of Science in Electronics Engineering Technology (Portland Campus)

Electronics Engineering Technology is concerned with theory, concepts, and practice of applied electronics engineering. Emphasis is placed on the practical application of engineering knowledge. As a result, the Electronics Engineering Technology graduate possesses a combination of theoretical and practical understanding and requires minimal on-the-job training.

Oregon Institute of Technology’s ABET accredited Bachelor of Science degree in Electronics Engineering Technology is conveniently offered at the OIT-Portland West Campus in order to accommodate degree seeking professionals working for high-tech companies. The West Campus is located at the heart of the high-tech industry cluster (Silicon Forest), minutes away from companies such as Intel, Tektronix, MAXIM, Credence, Lattice,Synopsis, TriQuint, and ESI. Some of the core courses for the degree and technical electives are also available online and at the OIT-Portland East campus.

Career Opportunities
The program is designed to prepare graduates to assume engineering and technology positions in the electronics industry. Graduates of the Electronics Engineering Technology Program fulfill a wide range of functions within industry. Bachelor's degree graduates are currently placed in positions such as component and system design, test engineering, product engineering, field engineering, manufacturing engineering, sales or market engineering, and quality control engineering. The program also provides a solid preparation for students intending to continue to graduate school to pursue master’s degrees in engineering, engineering management and MBAs.

Employers of Electronics Engineering Technology graduates include research and development laboratories, electronic equipment manufacturers, public utilities, colleges and universities, government agencies, medical laboratories and hospitals, electronic equipment distributors, semiconductor companies, and automated electronic controlled processing companies. Recent graduates have been employed at companies such as MAXIM, Tektronix, TriQuint, MSE and Intel.

Objectives
The objectives of the Electronics Engineering Technology Program are:
1. The graduates of the program will possess a strong technical background as well as analytical and problem solving skills, and will contribute in a variety of technical roles within the electronics and high-tech industry. BSEE graduates are expected to be employed as test engineers, characterization engineers, applications engineers, field engineers, hardware engineers, process engineers, and similar engineering technology positions within this industry.
2. The graduates of the program will be working as effective team members with excellent oral and written communication skills, assuming technical and managerial leadership roles throughout their career.
3. The graduates of the program will be committed to professional development and lifelong learning by engaging in professional and/or graduate education in order to stay current in their field and achieve continued professional growth.

We encourage students to start the advising process with OIT right after they complete the first year of their AAS degree.

Accreditation
The Electronics Engineering Technology program is accredited by the Technology Accreditation Commission (TAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Degree Requirements
A rigorous curriculum in Electronics Engineering Technology requires 187 credit hours, taking a full-time student approximately four years to complete.

Bachelor of Science in Electronics Engineering Technology

Curriculum
The curriculum map below shows the required courses, recommended sequence, and recommended terms during which they should be taken for students transferring into the program with an accredited AAS degree or equivalent lower division coursework (freshman and sophomore years).

Transfer students and part-time students should contact the EET Program Director concerning transfer of technical coursework.

Our BSEE program has articulation and transfer agreements with the Electronics, Microelectronics, and Renewable Energy Technology programs at Portland Community College, Clackamas Community College, Chemeketa Community College, and Columbia Gorge Community College. Students transferring to OIT with an AAS degree from these programs will not be required to take any lower-division electronics coursework. It is recommended that students have completed Calculus II prior to transferring to the BSEEET program at OIT, since Integral Calculus is a pre-requisite for most upper-division BSEEET courses.

Freshman and Sophomore Years
The degree requirements for the first two years can be fulfilled by completing an accredited Associate of Applied Science degree
in Electronics Engineering Technology, Microelectronics Engineering Technology, Microelectronics Technology, Electrical Engineering Transfer, Renewable Energy Technology, or equivalent coursework. OIT has articulation agreements with Portland Community College, Clackamas Community College, Chemeketa Community College and Columbia Gorge Community College. Students transferring to OIT with an AAS degree from these programs will not be required to take any lower-division electronics courses at OIT. In addition to the electronics courses, students must complete the programming, math and science, communication, and general education courses specified below during the Freshman and Sophomore years while completing their AAS degree and MATH 252. Below is a list of courses to satisfy the requirements for the first two years of the degree.

Communication (12 credits)
- SPE 111 Fundamentals of Speech 3
- WRI 121 English Composition 3
- WRI 122 English Composition 3
- WRI 227 Technical Report Writing 3

General Education (12 credits)
- Humanities elective 6
- Social Science elective 6

Mathematics and Science (31 credits)
- MATH 111 College Algebra 4
- MATH 112 Trigonometry 4
- MATH 251 Differential Calculus 4
- MATH 252 Integral Calculus 4
- PHY 221 General Physics with Calculus 4
- PHY 222 General Physics with Calculus 4
- PHY 223 General Physics with Calculus 4
- Math/Science elective 3

Electronics (36 credits)
- EET 215 Digital Circuits I 4
- EET 216 Digital Circuits II 4
- EET 217 Electric Circuits I 4
- EET 218 Electric Circuits II 4
- EET 219 Semiconductor Devices and Amplifiers 4
- 200-level Technical electives* 16

Programming (4 credits)
- CST 116 C++ Programming I 4

Program Courses

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MATH 254N Vector Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 321 Applied Differential Equations I</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>EE 320 Advanced Circuit and Systems Analysis</td>
<td>5</td>
</tr>
<tr>
<td>EE 321 Electronics I</td>
<td>5</td>
</tr>
<tr>
<td>MGT 345 Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td></td>
</tr>
<tr>
<td>EE 323 Electronics II</td>
<td>5</td>
</tr>
<tr>
<td>EE 333 Advanced Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 267 Engineering Programming</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>EE 325 Electronics III</td>
<td>5</td>
</tr>
<tr>
<td>EE 335 Advanced Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>Technical elective *</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>EE 331 Digital System Design with HDL</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 465 Capstone Project</td>
<td>2</td>
</tr>
<tr>
<td>Technical elective *</td>
<td>3</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td></td>
</tr>
<tr>
<td>EE 430 Linear Systems and Digital Signal Processing</td>
<td>5</td>
</tr>
<tr>
<td>EE 432 Advanced Digital System Design with HDL</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 465 Capstone Project</td>
<td>2</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>EE 401 Communication Systems</td>
<td>5</td>
</tr>
<tr>
<td>ENGR 465 Capstone Project</td>
<td>2</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>

* See an advisor or the program director for a list of appropriate courses.

Renewable Energy Engineering

Degree Offered

Bachelor of Science in Renewable Energy Engineering

Master of Science in Renewable Energy Engineering

A Bachelor of Science in Renewable Energy Engineering, BSREE, is offered by both Oregon Institute of Technology’s Portland and Klamath Falls campuses. A program that accommodates both full-time and part-time students is offered in Portland (for more information, contact Dr. Robert Bass, 7726 SE Harmony Road, Portland, OR 97222, phone (503) 821-1250). A conventional four-year, day-time delivery program is offered at the main campus in Klamath Falls (for more information, contact Prof. James Zipay, 3201 Campus Drive, Klamath Falls, OR 97601, phone (541) 885-1543).

The Renewable Energy Engineering Degree Program prepares students for the challenges of designing, promoting and implementing renewable energy engineering in society’s rapidly-changing energy-related industries. Energy, in its many abundant forms, is the driving physical factor upon which industrial societies are founded. As geopolitical, environmental and geological factors act to constrain tradition resources, societies have been forced to re-think and re-develop their energy infrastructures. Renewable energy resources include solar thermal collectors, photovoltaics, ground-source heat pumps, geothermal resources, hydroelectric power, wind power, tidal and wave power, biofuels and fuel cells. OIT’s Bachelor of Science in Renewable Energy Engineering prepares students for success in these rapidly developing fields.

The Renewable Energy Engineering Degree Program is built upon a solid foundation in physics, chemistry, mathematics and communications. Added to this foundation are courses in electrical and mechanical engineering that establish a firm understanding of the fundamentals of energy. The engineering coursework prepare students for renewable energy-specific courses such...
Program Educational Objectives

1. BSREE graduates will excel as professionals in the various fields of energy engineering.
2. BSREE graduates will be known for their commitment to lifelong learning, social responsibility, and professional and ethical responsibilities in implementing sustainable engineering solutions.
3. BSREE graduates will excel in critical thinking, problem solving and effective communication.

Student Preparation
High school students should be prepared to start their college academic work with at least college calculus and freshman English composition. Typically, this means the successful new student has completed:

1. Four years of high school mathematics including algebra I and II, geometry and trigonometry
2. Four years of English composition/writing
3. Four years of science including physics and chemistry

Students entering the program by transfer are requested to contact the program director for evaluation of REE-related transfer courses.

Accreditation
Oregon Institute of Technology is accredited by the Northwest Commission on Colleges and Universities, 8060 165th Ave. NE, Suite 100, Redmond, WA 98052-3981, an institutional accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S. Department of Education.

Degree Requirements
The Bachelor of Science in Renewable Engineering is a rigorous curriculum that requires 182 credit hours and approximately four years to complete. See the general education requirements for a bachelor's degree listed in the Academic Policies section of the catalog.

Bachelor of Science in Renewable Energy Engineering

Career Opportunities
Program graduates will enter energy careers as power engineers, PV-semiconductor processing engineers, facilities and energy managers, energy system integration engineers, HVAC and M/E/P engineers, design and modeling engineers for net-zero energy buildings, LEED accredited professionals (AP), biofuels plant and operations engineers, energy systems control engineers, power electronics engineers, utility program managers, as well as renewable energy planners and policy makers. Graduates of the program will be able to pursue a wide range of career opportunities, not only within the emerging field of renewable energy, but within more traditional areas of energy engineering as well.

Program Educational Objectives
1. BSREE graduates will excel as professionals in the various fields of energy engineering.
2. BSREE graduates will be known for their commitment to lifelong learning, social responsibility, and professional and ethical responsibilities in implementing sustainable engineering solutions.
3. BSREE graduates will excel in critical thinking, problem solving and effective communication.

Student Preparation
High school students should be prepared to start their college academic work with at least college calculus and freshman English composition. Typically, this means the successful new student has completed:

1. Four years of high school mathematics including algebra I and II, geometry and trigonometry
2. Four years of English composition/writing
3. Four years of science including physics and chemistry

Students entering the program by transfer are requested to contact the program director for evaluation of REE-related transfer courses.

Accreditation
Oregon Institute of Technology is accredited by the Northwest Commission on Colleges and Universities, 8060 165th Ave. NE, Suite 100, Redmond, WA 98052-3981, an institutional accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S. Department of Education.

Degree Requirements
The Bachelor of Science in Renewable Engineering is a rigorous curriculum that requires 182 credit hours and approximately four years to complete. See the general education requirements for a bachelor's degree listed in the Academic Policies section of the catalog.
Junior Year Fall
EE 321 Electronics I 5
MATH 361 Statistical Methods I 4
MECH 318 Fluid Mechanics I 4

Total 16

Junior Year Winter
EE 321 Electronics I 5
MATH 361 Statistical Methods I 4
MECH 318 Fluid Mechanics I 4

Total 16

Junior Year Spring
EE 343 Solid-State Electronic Devices 3
ENGR 355 Thermodynamics 3
WRI 327 Advanced Technical Writing 3

Total 15

Senior Year Fall
EE 419 Power Electronics 4
MECH 433 HVAC 5
REE 339 Senior Project I 2
REE 463 Energy Systems Instrumentation and Control 3

Total 15

Senior Year Winter
REE 339 Senior Project I 2
REE 449 Senior Project II 2
REE 455 Energy-Efficient Building Design 3
REE 459 Senior Project III 2

Total 17

Senior Year Spring
EE 456 Control System Design 4
REE 347 Renewable Energy Engineering Electives 5
REE 463 Energy Systems Instrumentation and Control 3

Total 15

Concurrent Degree in Environmental Sciences
Renewable Energy Engineering students have the opportunity to earn concurrent degrees in Renewable Energy Engineering and Environmental Sciences. The additional degree requires 50 credits in Environmental Sciences courses, which can be taken concurrent to Renewable Energy Engineering courses or an add-on year. A second degree in Environmental Sciences places engineering projects in the context of environmental impacts and environmental regulations, and greatly increases job opportunities for OIT Renewable Energy Engineering graduates. The purpose of the concurrent programs is to challenge motivated students to become even better prepared for the engineering and environmental job markets. To obtain both degrees, students must complete the following listed courses along with the courses required for the Bachelor of Science in Renewable Energy Engineering.

BIO 111 Introduction to Environmental Sciences 4
BIO 211 Principles of Biology 4
BIO 212 Principles of Biology 4
BIO 213 Principles of Biology 4
BIO 237 Riparian Assessment Methods 3
BIO 327 General Ecology 4
BIO 434 Data Analysis Methods 3
MATH 362 Statistical Methods II 4
BIO 484 Sustainable Human Ecology 4
CHE 223 General Chemistry* 5
CHE 235 Streamwater Chemistry and Sampling 3
CHE 331 Organic Chemistry I 4
ENV 314 Environmental Regulation 3
GEOG 105 Physical Geography; Geomorphology 3
GIS 105 Map and Compass/GPS 1
GME 134 Geographic Information Systems 4

* With advisor approval students may take REE 201 in place of ENGR 101 and ENGR 102.
** Advisor approval required

* CHE 223 should be taken as the Renewable Energy Engineering required Math/Science elective.
** This technical emphasis elective must have a CHE prefix; different courses are offered every year.
Geomatics Department

Jack Walker, *Department Chair*

Professors: J. Ritter, J. Walker

Assistant Professor: M. Marker

Instructor: M. Duryea

Degree Offered

Bachelor of Science in Geomatics with options in:
- Surveying
- Geographic Information Systems

Minor Offered

Geographic Information Systems

Geomatics is the modern scientific term referring to an integrated approach to the measurement, analysis and management of spatial data. Geomatics employs advanced technologies such as Geographic Information Systems (GIS), the Global Positioning System (GPS), digital photogrammetry, digital total stations, and satellite remote sensing to create a detailed but understandable picture of the Earth's physical features and the built environment. Geomatics encompasses disciplines that depend on georeferenced spatial data, including surveying, engineering, cartography, land information management, geodesy, and remote sensing.

Students within the Geomatics Program must choose between either an option in Surveying or Geographic Information Systems (GIS). Students may, with consent of their advisor, complete both options.

Program Objectives

The bachelor in Geomatics Program options have the following objectives:

1. Provide students with a broad foundation in major geomatics disciplines.
2. Prepare students to function effectively on multidisciplinary teams.
3. Prepare graduates to enter into professional practice.
4. Prepare graduates to become licensed or certified professionals.

Student Preparation

It is recommended that students prepare for entrance into the program by emphasizing mathematics and science in high school. Two years of algebra and one year each of geometry, trigonometry and physics are desirable prerequisites. Students lacking this preparation typically require additional time for degree completion.

Degree Requirements

A minimum of 181 term hours must be completed for the Surveying option, of which 77 term hours must be in the GIS and geomatics area. A minimum of 181 term hours must be completed for the GIS option, of which 74 term hours must be in the GIS and geomatics area.

Bachelor of Science in Geomatics, Surveying Option

The department offers a nationally-recognized professional degree program that prepares students for employment within the geomatics profession and licensure as a Professional Land Surveyor (PLS). Students enjoy small classes taught by licensed professionals that emphasize fundamental theory and problem solving in a computer-intensive curriculum. Field laboratory experiences integrated throughout the curriculum provide practical skills, and offer extensive opportunities to prepare students to work in teams using state-of-the-art technology. Upon completing the freshman year, students often have sufficient experience to obtain summer employment as a survey crew member.

Completion of the program qualifies graduates to take the Fundamentals of Surveying (FS) exam during the spring term of the senior year. The broad-based nature of the curriculum ensures that graduates will be prepared to fulfill both the traditional and contemporary roles of the profession. The program rigor is similar to a traditional engineering program; however, geomatics courses replace the traditional engineering core subjects.

Cooperative Education

Geomatics students may, upon completion of the freshman year, apply for student career experience programs (SCEP) with the U.S. Bureau of Land Management, Bonneville Power Administration, U.S. Forest Service, or other appropriate employers. Work experiences are paid and may be for three or six month periods. Students may earn two or four credits for work experience periods. A maximum of four credits may be applied toward the bachelor’s degree.

Geomatics students are also eligible for the Civil Engineering Cooperative Program (CECOP), offering high-quality, paid industrial experience and related academic activities while students pursue their degree. The Oregon State Board of Examiners for Engineering and Land Surveying (OSBEELS) counts this internship time toward PLS licensure requirements.

Scholarships

Approximately 40 scholarships are available to geomatics students each year through CLSA, PLSO, LSAW, WESTFED, ACSM, and other organizations. BLM SCEP students may be eligible for additional funding to cover books and tuition.

Career Opportunities

The employment forecast for graduates in this field is exceptional. As an increasing number of licensed surveyors across the nation retire, a personnel shortage has been created within the geomatics profession. Graduates are prepared for a wide variety of career opportunities in the fields of surveying, engineering, construction, remote sensing, GIS, and land information management. Geomatics provides the opportunity to work primarily outdoors, exclusively in an office, or in some combination of the two. Geomatics attracts individuals who enjoy working outdoors, as well as those who enjoy working indoors with computers, advanced technology, and high-tech instruments.

Accreditation

The Geomatics Program (surveying option) is accredited by the Applied Science Accreditation Commission (ASAC) of ABET, Inc., 111 Marketplace, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.
Bachelor of Science in Geomatics, Surveying Option

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 161</td>
<td>Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>CIV 112</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GME 175</td>
<td>Computations and Plotting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 163</td>
<td>Route Surveying</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MATH 254</td>
<td>Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GME 242</td>
<td>Land Descriptions and Cadastre</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GME 264</td>
<td>Digital Design for Surveying</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 343</td>
<td>Boundary Surveys</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIS 115</td>
<td>Visual BASIC Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GIS 316</td>
<td>Geospatial Vector Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 466</td>
<td>Boundary Law II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME/GIS elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math elective *</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 454</td>
<td>Advanced Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 452</td>
<td>Map Projections</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GME 454</td>
<td>GNSS Surveying</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GME 468</td>
<td>Geomatics Practicum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business elective (upper-division)**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

* Students must demonstrate advancement in educational content, courses must not be lower level than courses in the required curriculum.
** BUS 304 or BUS 362 recommended.

Note: Humanities and Social Science electives must be approved by the department.

Career Opportunities

The list of opportunities for students in the field of GIS has been, and is continuing to show substantial growth. As our society becomes more data centered, the importance of understanding the spatial location of this data and its spatial relationship to other data is becoming increasingly apparent. Understanding such geospatial relationships is fundamental to areas such as health care, land records management, transportation modeling, environmental engineering/science, and urban planning, to name only a few. Local, state, and federal agencies are embracing GIS more each year as these agencies realize that GIS is the appropriate tool to solve long-standing geospatial problems. Private industry is also embracing GIS since it can be used to streamline delivery and/or response routes. Both private and public entities have also realized that GIS provides an excellent decision support framework structure.

Bachelor of Science in Geomatics, Geographic Information Systems (GIS) Option

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 161</td>
<td>Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>CIV 112</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GIS 105</td>
<td>Map and Compass/GPS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GME 175</td>
<td>Computations and Plotting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BUS 226</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GME 351</td>
<td>Construction and Engineering Surveying</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 444</td>
<td>Adjustment by Least Squares</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MGT 345</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GME 454</td>
<td>Advanced Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 452</td>
<td>Map Projections</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GME 454</td>
<td>GNSS Surveying</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 454</td>
<td>Advanced Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 452</td>
<td>Map Projections</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GME 454</td>
<td>GNSS Surveying</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GME 468</td>
<td>Geomatics Practicum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business elective (upper-division)**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Students learn in a project-based environment how to manage the flow of data through the project in terms of data acquisition, processing, analysis, and presentation. Within the GIS option, students are able to select individual areas of focus based on independent study and/or online courses.

Bachelor of Science in Geomatics, Geographic Information Systems (GIS) Option

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 161</td>
<td>Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>CIV 112</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GIS 105</td>
<td>Map and Compass/GPS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GME 175</td>
<td>Computations and Plotting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GME 134</td>
<td>Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>GME 162</td>
<td>Plane Surveying II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GIS 306</td>
<td>Geospatial Raster Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 241</td>
<td>Boundary Law I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>GME 242</td>
<td>Land Descriptions and Cadastre</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GIS 316</td>
<td>Geospatial Vector Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 254N</td>
<td>Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GIS 446</td>
<td>GIS Database Development</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIS 115</td>
<td>Visual BASIC Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIS 341</td>
<td>Relational Database Design I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GME 425</td>
<td>Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GME 451</td>
<td>Geodesy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social Science elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

The Minor in Geographic Information Systems (GIS)

The Minor in Geographic Information Systems (GIS) acknowledges the achievement of 21 credits taken from the following GIS course listing.

Requirements of Minor

- **GIS 103** Introduction to GIS 1
- **GME 134** Geographic Information Systems 4

Elective Courses: 16 credits required

- **GIS 306** Geospatial Raster Analysis 4
- **GIS 316** Geospatial Vector Analysis I 4
- **GIS 332** Customizing the GIS Environment I 4
- **GIS 407** GIS Practicum 4
- **GIS 426** Geospatial Vector Analysis II 4
- **GIS 432** Customizing the GIS Environment II 4
- **GIS 446** GIS Database Development 4

Geoscience Elective

- **MATH 341** or **MATH 362** recommended.

Business Elective

- **BUS 304** or **BUS 356** recommended.

Note: Humanities and Social Science electives must be approved by the department.

Geographic Information Systems Minor

The Geographic Information Systems (GIS) minor is open to all majors and is especially recommended for students majoring in Geomatics (Surveying Option), Environmental Sciences, Business/Management/Information Systems, Computer Software Engineering, Renewable Energy Engineering and Health Care. The minor provides the essential kernel of knowledge and skill necessary to approach geospatial issues pertaining to these disciplines. An advisor in the Geomatics Department must approve any substitution of courses from those listed.

Preparation for this course of study entails a functional level of computer literacy that can be evaluated in consultation with an advisor. Students must also have successfully completed MATH 111 prior to enrolling in upper-division classes.
Humanities and Social Sciences Department

Lynda Baker, Department Chair
Maria Lynn Kessler, Program Director and Curriculum Coordinator, Applied Psychology
Alishia Huntoon, Extern Coordinator, Applied Psychology
Lynda Baker, Curriculum Coordinator, Humanities and Social Sciences

Professors: L. Baker, M. Clark, M. Kessler, R. Luppi, M. Neupert
Associate Professor: A. Huntoon
Assistant Professors: L. Dubray, J. Neighbours

Degrees Offered
Bachelor of Science in Applied Psychology

Minors Offered
International Relations Psychology

Module Offered
Oregon Transfer (OTM)

The Humanities and Social Sciences Department offers a wide variety of classes that meet the general education requirements for all students. In addition, these classes meet the lower-division requirements for college transfer students in many pre-professional programs.

Department Goals and Objectives
1. To provide coursework in the humanities and social sciences in order to prepare students for employment in a rapidly changing global market.
2. To provide course offerings in multiculturalism and globalization.
3. To assist students in developing critical thinking and problem-solving abilities and to develop scientific knowledge and inquiry skills.
4. To assist students in developing ethical and cultural awareness.
5. To prepare students to be responsible citizens and lifelong learners.
6. To assist students in developing an aesthetic appreciation of the arts.

International Relations Minor
The International Relations Minor provides an interdisciplinary grounding in the political, economic, and cultural factors that influence human activities across national boundaries in today’s changing global environment. The minor offers integrated courses in social science, humanities, business, and communications.

This OIT offering is based upon certain academic studies and employer recommendations for the basic preparation of students seeking careers with multinational corporations, banking, the U.S. government, international organizations, and the media. The minor prepares students, both technical and non-technical, for positions that require a basic understanding of international politics and business, intercultural communication, and global cultural diversity.

Enrollment in the minor is through the Humanities and Social Sciences Department. For more information, contact the department chair or your advisor.

Requirements of the Minor
Required lower-division courses (6 credits):
- COM 205 Intercultural Communication
- PSCI 250 Introduction to World Politics

Lower-division electives (3 credits)
Select one of the following:
- GEOG 106 Cultural Geography I
- GEOG 107 Cultural Geography II
- GEOG 108 Cultural Geography III

Required upper-division courses (9 credits)
- PSCI 326 World Politics in Transition
- PSCI 355 International Conflict in the 20th Century
- PSCI 497 United States Foreign Policy

Upper-division electives (6 credits)
Select any two of the following:
- ANTH 452 Globalization
- BUS 308 Principles of International Business
- COM 320 Advanced Intercultural Communication
- ENG 381 Contemporary World Literature
- HIST 392 Modern Asia

All courses must be completed with grade "C" or better.

Psychology Minor
The psychology minor is open to all majors and is especially recommended for students majoring in allied health and medical sciences, management, and communication studies. The minor offers a variety of courses in psychology that can enhance knowledge. A minimum of 24 credits is required to complete the minor. Students should meet with a psychology advisor when choosing electives to fulfill the minor requirements. Enrollment in the minor is through the Humanities and Social Sciences Department; contact the department chair or your advisor for more information.

Requirements of the Minor
1. A minimum of 24 credits is required to earn the minor.
2. A minimum of 12 credits must be selected from upper-division coursework. Students must pay strict attention to prerequisite requirements.
3. Courses
 - Required lower division courses (9 credits):
 - PSY 201 Psychology
 - PSY 202 Psychology
 - PSY 203 Psychology
 - Additional Courses:
 - 12 credits of upper division psychology courses
 - 3 credits of lower or upper division courses
4. For all courses counted toward the Minor in Psychology, a letter grade of "C" or better is required to be awarded the minor.
5. At least 12 credits of courses in this minor must be completed at OIT.

Note: Not all courses are offered every term or every year.

Applied Psychology

Maria Lynn Kessler, Program Director
Alishia Huntoon, Externship Coordinator

Participating Faculty: A. Huntoon, M.L. Kessler, J. Neighbours

Degree Offered
Bachelor of Science in Applied Psychology

The Bachelor of Science in Applied Psychology prepares students for careers that apply the principles of psychology in a variety of
diverse settings. Three emphasis areas are provided. The human services emphasis focuses on preparing students for working with human service agencies and related fields. An emphasis on psychology applied to business (organizational development) focuses on issues relative to management within organizations, management of organizational change and organizational development. The third emphasis area is pre-education. Students in this emphasis are prepared, through the careful selection of courses, to enter graduate programs in education. They may choose to focus on elementary, special, school counseling or secondary education with an emphasis in social sciences. Students should consult with their advisor about their interests. Students in the program share a common experience in courses offered the first two years. Then they branch out into courses tailored to the emphasis they wish to pursue. Through the use of seminars, externships and senior projects, students may prepare themselves for exciting and rewarding careers in the applied psychology field, or for additional coursework in graduate programs.

Mission Statement
The mission of the Applied Psychology Program is to enable students to apply general knowledge of psychology and in-depth knowledge and skill in specific areas of psychology to communicate effectively, think critically, behave ethically and with cultural awareness and work interpersonally with people from a wide variety of backgrounds.

Objectives
Objectives of the Applied Psychology Program are:

1. To produce graduates with effective interpersonal skills that can work in a variety of practical settings.
2. To enable students to obtain the knowledge and skills necessary for immediate employment and/or graduate study in psychology and related areas.
3. To provide opportunities for students who wish to apply psychology training to employment in business and human service related organizations or to prepare for graduate programs in related areas.
4. To serve as a minor to complement other programs on campus.

Applied Psychology Program
Student Learning Outcomes

1. Students will be able to demonstrate an understanding of the major theoretical approaches, findings, and trends in psychology;
2. Students will demonstrate an understanding of and be able to use major research methodologies in psychology, including design, data analysis, and interpretation;
3. Students will demonstrate an understanding of applications of psychology to personal, social, and organizational problems and issues;
4. Students will demonstrate knowledge and understanding of relevant ethical issues including a general understanding of the relevant codes of ethics.

Career Opportunities
Nationwide, college graduates with a bachelor's in psychology perform a wide variety of jobs or attend a wide variety of graduate programs. Graduates eventually work in counseling, education, social service, management, public relations, personnel, sales, and other fields. All of these jobs are potentially available to graduates of OIT's Applied Psychology Program. Many of OIT's applied psychology graduates have found jobs in the Klamath Basin. About two-thirds work in human services. Human service employers include county and state agencies, as well as a wide range of private, non-profit agencies. Human service graduates benefit from the unique focus of OIT's Applied Psychology Program with its emphasis on hands-on applied training. Other graduates complete the Master of Arts in Teaching (MAT) Program and pursue careers in education. Most pursue teaching in the K-6th grades, but some have pursued careers in school counseling, special education, or secondary teaching. Graduates have also been employed in industry and are following management training programs. Finally, graduates have also pursued various master's and doctoral programs in psychology (e.g., counseling, management, organization development, behavior analysis and human services) and related fields (e.g., chiropractic and social work).

Degree Requirements
Students must meet the general education requirements, as stated elsewhere in this catalog, and satisfactorily complete the courses listed in this curriculum to obtain the Bachelor of Science in Applied Psychology. A total of 181 credits are required for the degree. Students must complete a core program consisting of 33 credits. These core courses are PSY 201, PSY 202, PSY 203, PSY 215, PSY 216, PSY 301, PSY 313, PSY 330, PSY 331, and MATH 243 or MATH 361. In addition, students must complete an emphasis area (listed below). Credits taken for externship or senior project do not count toward the emphasis. Students electing to take externship are restricted to a maximum of 32 credits. All core and emphasis courses must be completed with a minimum grade of “C” in order to earn the degree.

Emphasis Requirements
Students completing the Human Services emphasis must complete the following courses:

- PSY 220 Community Psychology
- PSY 334 Behavior Modification I
- PSY 335 Behavior Modification II
- PSY 339 Biopsychology
- PSY 341 Psychoactive Drugs I: Psychiatric Drugs
- PSY 342 Psychoactive Drugs II: Abused Drugs
- Plus four credits of psychology or sociology electives by advisement.

Students completing the Organizational Development track must complete the following courses:

- PSY 347 Organizational Behavior
- PSY 360 Organizational Psychology
- PSY 361 Industrial Psychology
- PSY 410 Organizational Change and Development
- Plus twelve credits of psychology, business, or technology electives by advisement.

Students completing the Pre-Education track must complete the following courses:

- PSY 311 Human Growth and Development I
- PSY 312 Human Growth and Development II
- PSY 334 Behavior Modification I
- PSY 335 Behavior Modification II
- PSY 416 Abnormal Behavior of Children and Adolescents
- Plus seven credits of psychology electives by advisement.
Students in the Pre-Education track must consult closely with their advisor in the selection of elective courses to complete prerequisite courses for their desired endorsement area.

Bachelor of Science in Applied Psychology

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Winter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 105</td>
<td>Collegiate Mathematics</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 111</td>
<td>College Algebra</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 202</td>
<td>Psychology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Spring</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 203</td>
<td>Psychology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 215</td>
<td>Abnormal Psychology I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Science elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Winter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 216</td>
<td>Abnormal Psychology II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or elective</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Science elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Spring</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 243</td>
<td>Introductory Statistics</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 361</td>
<td>Statistical Methods I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective*</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Science elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 301</td>
<td>Basic Counseling Techniques</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 313</td>
<td>Psychological Research Methods I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication elective*</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Winter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 330</td>
<td>Social Psychology I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Spring</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 331</td>
<td>Social Psychology II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 301</td>
<td>Basic Counseling Techniques</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 313</td>
<td>Psychological Research Methods I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication elective*</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Winter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 330</td>
<td>Social Psychology I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Spring</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 331</td>
<td>Social Psychology II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis elective**</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See advisor for appropriate courses.

** To complete their emphasis, students must take courses from the appropriate list that follows. Credits taken for externship or senior project do not count as emphasis electives.

*** No more than 32 credits of externship allowed for graduation without departmental approval.

Emphasis Electives

Human services emphasis: PSY 220, PSY 334, PSY 335, PSY 339, PSY 341, PSY 342, plus four credits of psychology or sociology electives by advisement.

Organization development emphasis: PSY 347, PSY 360, PSY 361, PSY 410, plus twelve credits of psychology, business, or technology electives by advisement.

Pre-Education emphasis: PSY 311, PSY 312, PSY 334, PSY 335, PSY 345, plus seven credits of psychology electives by advisement.
Oregon Transfer Module (OTM)

The Oregon Transfer Module (OTM) provides a one-year curriculum for students who plan to transfer to a State of Oregon community college or university. The module allows students to complete one year of general education foundation course work that is academically sound and will meet the admission standards of the receiving school. Students should work closely with an academic advisor to ensure selection of appropriate course work. Upon transfer, students may be required to complete additional course work in general education or an academic major specific to the receiving institution. Students who transfer prior to the completion of the Oregon Transfer Module will have their courses individually evaluated by the receiving institution. Students must complete a minimum of 45 credits of lower division course work with a grade of “C-” or better in order to receive credit for the Oregon Transfer Module. A minimum of 12 credits must be earned at OIT. The following courses may be used to complete the Oregon Transfer Module:

FOUNDATIONAL SKILLS

Writing and Oral Communication

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRI 121</td>
<td>English Composition (3)</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition (3)</td>
</tr>
<tr>
<td>WRI 123</td>
<td>English Composition (3)</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing (3)</td>
</tr>
</tbody>
</table>

Oral Communication

One course of Fundamentals of Speech or communication

SPE 111 Fundamentals of Speech (3)

Mathematics

One course of College level Math

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 105</td>
<td>Collegiate Mathematics (4)</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra (4)</td>
</tr>
<tr>
<td>MATH 111A / MATH111B</td>
<td>College Algebra (4)</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry (4)</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Fundamentals of Elementary Mathematics I (4)</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Fundamentals of Elementary Mathematics II (4)</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Fundamentals of Elementary Mathematics III (4)</td>
</tr>
<tr>
<td>MATH 243</td>
<td>Introductory Statistics (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Differential Calculus (4)</td>
</tr>
<tr>
<td>MATH 252</td>
<td>Integral Calculus (4)</td>
</tr>
<tr>
<td>MATH 253N</td>
<td>Sequences and Series (4)</td>
</tr>
<tr>
<td>MATH 254N</td>
<td>Vector Calculus I (4)</td>
</tr>
<tr>
<td>MATH 261</td>
<td>Introduction to Linear Algebra (3)</td>
</tr>
<tr>
<td>MATH 276</td>
<td>Advanced Calculus (4)</td>
</tr>
</tbody>
</table>

Science/Math/Computer Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 10</td>
<td>General Biology</td>
</tr>
<tr>
<td>BIOL 102</td>
<td>General Biology</td>
</tr>
<tr>
<td>BIOL 103</td>
<td>General Biology</td>
</tr>
<tr>
<td>BIOL 105</td>
<td>Microbiology</td>
</tr>
<tr>
<td>BIOL 11</td>
<td>Introduction to Environmental Sciences</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introduction to Data Analysis</td>
</tr>
<tr>
<td>BIOL 120</td>
<td>Medical Terminology</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>Nutrition</td>
</tr>
<tr>
<td>BIOL 209</td>
<td>Current Research Topics in Medical Science I</td>
</tr>
<tr>
<td>BIOL 211</td>
<td>Principles of Biology</td>
</tr>
<tr>
<td>BIOL 212</td>
<td>Principles of Biology</td>
</tr>
<tr>
<td>BIOL 213</td>
<td>Principles of Biology</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Introduction to Veterinary Medicine</td>
</tr>
<tr>
<td>BIOL 220</td>
<td>Cardiovascular Physiology</td>
</tr>
<tr>
<td>BIOL 225</td>
<td>Riparian Assessment Methods</td>
</tr>
<tr>
<td>BIOL 226</td>
<td>Introduction to Wildlife Rehabilitation</td>
</tr>
<tr>
<td>BIOL 227</td>
<td>Introduction to Forensic Science</td>
</tr>
<tr>
<td>BIOL 231</td>
<td>Human Anatomy and Physiology I</td>
</tr>
<tr>
<td>BIOL 232</td>
<td>Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>BIOL 233</td>
<td>Human Anatomy and Physiology III</td>
</tr>
<tr>
<td>BIOL 235</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>BIOL 313</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 317</td>
<td>Invertebrate Biology</td>
</tr>
<tr>
<td>BIOL 325</td>
<td>Applied Aquatic Botany</td>
</tr>
<tr>
<td>BIOL 327</td>
<td>General Ecology</td>
</tr>
<tr>
<td>BIOL 331</td>
<td>Human Anatomy and Physiology I</td>
</tr>
<tr>
<td>BIOL 332</td>
<td>Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>BIOL 333</td>
<td>Human Anatomy and Physiology III</td>
</tr>
<tr>
<td>BIOL 335</td>
<td>Cross-Sectional Anatomy</td>
</tr>
<tr>
<td>BIOL 336</td>
<td>Essentials of Pathophysiology</td>
</tr>
<tr>
<td>BIOL 337</td>
<td>Aquatic Ecology</td>
</tr>
<tr>
<td>BIOL 341</td>
<td>Medical Genetics</td>
</tr>
<tr>
<td>BIOL 342</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL 345</td>
<td>Medical Microbiology</td>
</tr>
<tr>
<td>BIOL 346</td>
<td>Pathophysiology I</td>
</tr>
<tr>
<td>BIOL 347</td>
<td>Pathophysiology II</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Vertebrate Biology</td>
</tr>
<tr>
<td>BIOL 352</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL 357</td>
<td>Introduction to Neuroscience</td>
</tr>
<tr>
<td>BIOL 409</td>
<td>Current Research Topics in Medical Science II</td>
</tr>
<tr>
<td>BIOL 426</td>
<td>Evolutionary Biology</td>
</tr>
<tr>
<td>BIOL 428</td>
<td>Animal Behavior</td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Data Analysis Methods</td>
</tr>
<tr>
<td>BIOL 436</td>
<td>Immunology</td>
</tr>
<tr>
<td>BIOL 461</td>
<td>BIO 461 Human Cadaver Dissection</td>
</tr>
<tr>
<td>BIOL 485</td>
<td>Klamath Bioregional Studies</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
</tr>
<tr>
<td>CHE 102</td>
<td>Elementary Chemistry</td>
</tr>
<tr>
<td>CHE 103</td>
<td>Elementary Chemistry</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 105</td>
<td>Elementary Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 106</td>
<td>Elementary Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 201</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 202</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 203</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 204</td>
<td>General Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 205</td>
<td>General Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 206</td>
<td>General Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 210</td>
<td>Clinical Pharmacology</td>
</tr>
<tr>
<td>CHE 211</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 221</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 222</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 233</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 235</td>
<td>Streamwater Chemistry and Sampling</td>
</tr>
<tr>
<td>CHE 260</td>
<td>Electrochemistry for Renewable Energy Applications</td>
</tr>
<tr>
<td>CHE 315</td>
<td>Environmental Chemistry and Toxicology</td>
</tr>
<tr>
<td>CHE 325</td>
<td>Soil Science</td>
</tr>
<tr>
<td>CHE 331</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHE 332</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHE 333</td>
<td>Organic Chemistry III</td>
</tr>
<tr>
<td>CHE 341</td>
<td>Instrumental Methods/Data Acquisition I</td>
</tr>
<tr>
<td>CHE 342</td>
<td>Instrumental Methods/Data Acquisition II</td>
</tr>
<tr>
<td>CHE 345</td>
<td>Corrosion Chemistry</td>
</tr>
<tr>
<td>CHE 346</td>
<td>Corrosion Chemistry Laboratory</td>
</tr>
<tr>
<td>CHE 350</td>
<td>Clinical Pharmacology for Nuclear Medicine</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions</td>
</tr>
<tr>
<td>CHE 450</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>CHE 451</td>
<td>Biochemistry II</td>
</tr>
<tr>
<td>CHE 452</td>
<td>Biological Chemistry</td>
</tr>
</tbody>
</table>

OIT. The following courses may be used to

Minimum of 12 credits must be earned at OIT. The following courses may be used to complete the Oregon Transfer Module:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 452</td>
<td>Biochemistry III</td>
</tr>
<tr>
<td>CHE 455</td>
<td>Water Quality Technology</td>
</tr>
<tr>
<td>CHE 465</td>
<td>Fate and Transport of Pollutants</td>
</tr>
<tr>
<td>CST 101</td>
<td>Introduction to Personal Computing</td>
</tr>
<tr>
<td>GEOG 105</td>
<td>Physical Geography: Geomorphology</td>
</tr>
<tr>
<td>GEOG 106</td>
<td>Cultural Geography I</td>
</tr>
<tr>
<td>GEOG 107</td>
<td>Cultural Geography II</td>
</tr>
<tr>
<td>GEOG 108</td>
<td>Cultural Geography III</td>
</tr>
<tr>
<td>GEOG 115</td>
<td>Physical Geography: Climatology</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Collegiate Mathematics</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 111A</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 111B</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Fundamentals of Elementary Mathematics I</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Fundamentals of Elementary Mathematics II</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Fundamentals of Elementary Mathematics III</td>
</tr>
<tr>
<td>MATH 243</td>
<td>Introductory Statistics</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
</tr>
<tr>
<td>MATH 252</td>
<td>Integral Calculus</td>
</tr>
<tr>
<td>MATH 253N</td>
<td>Sequences and Series</td>
</tr>
<tr>
<td>MATH 254N</td>
<td>Vector Calculus I</td>
</tr>
<tr>
<td>MATH 261</td>
<td>Introduction to Linear Algebra</td>
</tr>
<tr>
<td>PHY 201</td>
<td>General Physics</td>
</tr>
<tr>
<td>PHY 202</td>
<td>General Physics</td>
</tr>
<tr>
<td>PHY 215</td>
<td>Topics in Astronomy</td>
</tr>
<tr>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>PHY 223</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>PHY 237</td>
<td>Meteorology</td>
</tr>
<tr>
<td>PHY 311</td>
<td>Introduction to Modern Physics</td>
</tr>
<tr>
<td>PHY 312</td>
<td>Introduction to Modern Physics</td>
</tr>
<tr>
<td>PHY 313</td>
<td>Introduction to Modern Physics</td>
</tr>
<tr>
<td>PHY 330</td>
<td>Electricity and Magnetism</td>
</tr>
<tr>
<td>PHY 410</td>
<td>Mathematical Methods: Fourier Optics</td>
</tr>
</tbody>
</table>

Social Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 101</td>
<td>Introduction to Physical Anthropology</td>
</tr>
<tr>
<td>ANTH 102</td>
<td>Introduction to Archeology</td>
</tr>
<tr>
<td>ANTH 103</td>
<td>Introduction to Cultural Anthropology</td>
</tr>
<tr>
<td>ANTH 107, 207, 307, 407 Seminar</td>
<td></td>
</tr>
<tr>
<td>ANTH 335</td>
<td>The Built Environment</td>
</tr>
<tr>
<td>ANTH 452</td>
<td>Globalization</td>
</tr>
<tr>
<td>ECO 201N</td>
<td>Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td>ECO 202N</td>
<td>Principles of Economics, Macroeconomics</td>
</tr>
<tr>
<td>ECO 203</td>
<td>Principles of Economics, Special Topics</td>
</tr>
<tr>
<td>ECO 357</td>
<td>Energy Economics and Policy</td>
</tr>
<tr>
<td>ECO 367</td>
<td>International Economics and Finance Management</td>
</tr>
<tr>
<td>GEOG 106</td>
<td>Cultural Geography I</td>
</tr>
<tr>
<td>GEOG 107</td>
<td>Cultural Geography II</td>
</tr>
<tr>
<td>GEOG 108</td>
<td>Cultural Geography III</td>
</tr>
<tr>
<td>HIST 101</td>
<td>History of Western Civilization</td>
</tr>
<tr>
<td>HIST 102</td>
<td>History of Western Civilization</td>
</tr>
<tr>
<td>HIST 103</td>
<td>History of Western Civilization</td>
</tr>
<tr>
<td>HIST 201</td>
<td>U.S. History</td>
</tr>
<tr>
<td>HIST 202</td>
<td>U.S. History</td>
</tr>
<tr>
<td>HIST 203</td>
<td>U.S. History</td>
</tr>
<tr>
<td>HIST 107, 207, 307, 407 Seminar</td>
<td></td>
</tr>
<tr>
<td>HIST 215</td>
<td>The American Western Experience</td>
</tr>
<tr>
<td>HIST 216</td>
<td>American Military History</td>
</tr>
<tr>
<td>HIST 224</td>
<td>Technology and the Ancient World</td>
</tr>
<tr>
<td>HIST 225</td>
<td>The Industrial Revolution</td>
</tr>
<tr>
<td>HIST 226</td>
<td>Technology and the Modern World</td>
</tr>
<tr>
<td>HIST 256</td>
<td>Natural/Cultural History of Western North America</td>
</tr>
<tr>
<td>HIST 266</td>
<td>Natural/Cultural History of Eastern Oregon</td>
</tr>
<tr>
<td>HIST 335</td>
<td>The Engineering Profession</td>
</tr>
<tr>
<td>HIST 356</td>
<td>A History of Energy</td>
</tr>
<tr>
<td>HIST 357</td>
<td>History of the Electric Grid</td>
</tr>
<tr>
<td>HIST 392</td>
<td>Modern Asia</td>
</tr>
<tr>
<td>HIST 478</td>
<td>History of Oregon</td>
</tr>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
</tr>
<tr>
<td>PSY 202</td>
<td>Psychology</td>
</tr>
<tr>
<td>PSY 203</td>
<td>Psychology</td>
</tr>
<tr>
<td>PSY 215</td>
<td>Abnormal Psychology I</td>
</tr>
<tr>
<td>PSY 216</td>
<td>Abnormal Psychology II</td>
</tr>
<tr>
<td>PSY 220</td>
<td>Community Psychology</td>
</tr>
<tr>
<td>PSY 301</td>
<td>Basic Counseling Techniques</td>
</tr>
<tr>
<td>PSY 311</td>
<td>Human Growth and Development I</td>
</tr>
<tr>
<td>PSY 312</td>
<td>Human Growth and Development II</td>
</tr>
<tr>
<td>PSY 313</td>
<td>Psychological Research Methods I</td>
</tr>
<tr>
<td>PSY 314</td>
<td>Psychological Research Methods II</td>
</tr>
<tr>
<td>PSY 317</td>
<td>Field Placement Seminar</td>
</tr>
<tr>
<td>PSY 321</td>
<td>Theories of Personality</td>
</tr>
<tr>
<td>PSY 322</td>
<td>Theories of Personality</td>
</tr>
<tr>
<td>PSY 325</td>
<td>Stress Management</td>
</tr>
<tr>
<td>PSY 330</td>
<td>Social Psychology I</td>
</tr>
<tr>
<td>PSY 331</td>
<td>Social Psychology II</td>
</tr>
<tr>
<td>PSY 334</td>
<td>Behavior Modification I</td>
</tr>
<tr>
<td>PSY 335</td>
<td>Behavior Modification II</td>
</tr>
<tr>
<td>PSY 336</td>
<td>Health Psychology I</td>
</tr>
<tr>
<td>PSY 337</td>
<td>Health Psychology II</td>
</tr>
<tr>
<td>PSY 339</td>
<td>Biopsychology</td>
</tr>
<tr>
<td>PSY 341</td>
<td>Psychoactive Drugs I</td>
</tr>
<tr>
<td>PSY 342</td>
<td>Psychiatric Drugs II</td>
</tr>
<tr>
<td>PSY 347</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>PSY 351</td>
<td>Cognitive Restructuring I</td>
</tr>
<tr>
<td>PSY 352</td>
<td>Cognitive Restructuring II</td>
</tr>
<tr>
<td>PSY 355</td>
<td>Evolutionary Psychology</td>
</tr>
<tr>
<td>PSY 358</td>
<td>Psychology of Gender</td>
</tr>
<tr>
<td>PSY 360</td>
<td>Organizational Psychology</td>
</tr>
<tr>
<td>PSY 361</td>
<td>Industrial Psychology</td>
</tr>
<tr>
<td>PSY 364</td>
<td>Environmental Psychology</td>
</tr>
<tr>
<td>PSY 371</td>
<td>Human Sexuality I</td>
</tr>
<tr>
<td>PSY 372</td>
<td>Human Sexuality II</td>
</tr>
<tr>
<td>PSY 401</td>
<td>Advanced Counseling Techniques</td>
</tr>
<tr>
<td>PSY 402</td>
<td>Applied Psychology Methods II</td>
</tr>
<tr>
<td>PSY 403</td>
<td>Applied Psychology Methods III</td>
</tr>
<tr>
<td>PSY 410</td>
<td>Organizational Change and Development</td>
</tr>
<tr>
<td>PSY 416</td>
<td>Abnormal Behavior of Children and Adolescents</td>
</tr>
<tr>
<td>PSY 420</td>
<td>Applied Psychology Externship</td>
</tr>
<tr>
<td>PSY 428</td>
<td>Animal Behavior</td>
</tr>
<tr>
<td>PSY 431</td>
<td>Family Therapy</td>
</tr>
<tr>
<td>PSY 432</td>
<td>Group Therapy</td>
</tr>
<tr>
<td>PSY 446</td>
<td>Psychological Trauma</td>
</tr>
<tr>
<td>PSY 456</td>
<td>Performance Management</td>
</tr>
<tr>
<td>PSY 464</td>
<td>Organizational Structure</td>
</tr>
<tr>
<td>PSY 480</td>
<td>Theories of Learning</td>
</tr>
<tr>
<td>SOC 204</td>
<td>Introduction to Sociology</td>
</tr>
<tr>
<td>SOC 210</td>
<td>Marriage and Family Living</td>
</tr>
<tr>
<td>SOC 304</td>
<td>Criminology</td>
</tr>
</tbody>
</table>
Management Department

Marla Miller, Department Chair

Grant Kirby, Program Director and Curriculum Coordinator, Information Technology

Hallie Neupert, Program Director and Curriculum Coordinator, Entrepreneurship/Small Business Management and Marketing

Pat Schaeffer, Program Director and Curriculum Coordinator, Operations Management

Maureen Sevigny, Program Director, Management Distance Education

Richard Bailey, Curriculum Coordinator, Accounting

Professors: R. Bailey, C. Jones, M. Miller, H. Neupert, M. Sevigny

Associate Professors: G. Kirby, C. Morgan, J. Wölverton

Assistant Professors: M. Ahalt, D. DaSaro, J. Jackson, M. Kirshner, P. Schaeffer

Instructor: J. Dickson

Degrees Offered
Bachelor of Science in Allied Health Management
Bachelor of Science in Information Technology, with options in:
 Accounting
 Applications Development
 Business/Systems Analysis
 Health Informatics
Bachelor of Science in Management, with options in:
 Accounting
 Entrepreneurship/Small Business Management
 Marketing
Bachelor of Science in Operations Management
Bachelor of Applied Science in Technology and Management (pending approval)

Minors Offered
Business
International Business
Information Technology

Specializations Offered
Accounting
Entrepreneurship/Small Business Management
Marketing
Travel and Tourism

Certificate Offered
Accounting (post baccalaureate)

The Management Department prepares students to take their place as leaders and managers in contemporary public and private organizations. Faculty in this department have been selected for their managerial experience and expertise in a diverse array of production and service industries.

Coursework in the Management programs builds upon a fundamental core of courses including management, marketing, accounting, finance, information systems, economics, ethics, organizational behavior, business law and presentations. These courses, along with program-specific courses, prepare students for their senior year which includes a senior project sequence and a capstone course.

As a result of this unique combination of resources and coursework, the Management Degree Programs remain vital and up-to-date, providing students with the technical tools of management and interpersonal skills that employers most desire. Equally important, each graduate will be ready to perform as an effective citizen in a culturally diverse, global work place.

Department Outcomes
Management Department graduates will:
1. Understand the functional areas of accounting, marketing, finance, management and economics.
2. Understand the legal and social environment of business.
3. Understand the global environment of business.
4. Understand the ethical obligations and responsibilities of business.
5. Be able to evaluate a business problem using business tools.
6. Be able to access and use information in business applications.
7. Be effective communicators.
8. Be effective team and/or group members.
9. Be able to apply knowledge of business concepts and functions in an integrated manner.

Degree Completion and Co-enrollment at Community Colleges
The Management Department has worked with many Oregon community colleges to develop Joint Enrollment, Transfer Credit (Articulation) Agreements and course sequences so that students can complete a degree with coursework taken from multiple institutions. See the general education requirements section of this catalog, the OIT Registrar’s Web site, or a management advisor for additional information. Coursework is delivered in a traditional classroom/computer lab setting at the Klamath Falls and Portland campuses. A capstone Senior Project provides management students with an opportunity to integrate their educational experience in the context of a “real world” business problem or project.

Distance Education
Many of the core management courses are available online to facilitate the needs of degree-completion students. Web courses are particularly appropriate for students capable of self-directed educational activities. Allied Health Management, Information Technology Applications Development Option and the Operations Management degrees are available online.

Required Student Equipment
Successful completion of these degrees requires intensive, hands-on use of computers. Therefore, all students are required to own their own computer. To ensure compatibility with campus-wide computers and networks, students should consult a department faculty member for a specification sheet. Financial aid may be available to help defray the cost of this equipment. Please consult the Financial Aid Office at OIT.
Accreditation
OIT has received specialized accreditation for its business programs through the International Assembly for Collegiate Business Education (IACBE).

Program Note
Students graduating with a Management degree are required to take a standardized exit exam in their last year.

Allied Health Management

Degree Offered
Bachelor of Science in Allied Health Management

This program bridges two disciplines; Allied Health and Management. The Bachelor of Science in Allied Health Management requires a current state and/or national registry, license, or certificate in an approved allied health field.

Career Opportunities
Graduates with a BS degree in Allied Health Management are prepared for mid-level management positions within hospital departments, out-patient facilities, clinics, and labs. The combination of the allied health care background and the management education make graduates uniquely qualified to manage the business aspects of labs and clinics and to supervise other technologists and technicians.

Student Preparation and Admissions
To be eligible for admission to the Allied Health Management Program, students must meet the following criteria:

1. Meet the OIT general admissions requirements.
2. Provide documentation of a current state and/or national registry, license, or certificate in an approved allied health field.

Each prospective student's academic credits and registry, license, or certificate will be individually evaluated to determine transferability and acceptability of the coursework.

Distance Education Admissions Requirements
The BS in Allied Health Management Program is also offered online. The online program is offered externally utilizing Internet delivery and requires collaborative learning.

Distance education applicants are required to submit an Online Degree Completion Program Application for Admission to the Distance Education Department at OIT, accompanied by a $100 non-refundable fee and official transcripts of each college or university attended.

Bachelor of Science in Allied Health Management

Curriculum

Freshman Year
44 transfer credits from approved Registry, License, or Certificate.

If fewer than 44 allied health credits are transferred in, additional electives, preferably in an allied health field of study, must be taken.

Sophomore Year

Fall
ACC 201 Principles of Accounting I 4
BIO 231 Human Anatomy and Physiology I 4
SPE 111 Fundamentals of Speech 3
WRI 121 English Composition 3
Total 14

Winter
BIO 232 Human Anatomy and Physiology II 4
COM 205 Intercultural Communication 3
MATH 111 College Algebra 3
WRI 122 English Composition 3
Total 14

Spring
ACC 203 Principles of Managerial Accounting 4
BIO 233 Human Anatomy and Physiology III 4
BUS 226 Business Law 3
BUS 317 Health Care Management 3
WRI 227 Technical Report Writing 3
Total 17

Junior Year

Fall
ACC 325 Finance 4
MATH 243 Introductory Statistics 4
or
MATH 361 Statistical Methods I 4
MIS 217 Health Care Systems and Policy 3
PSY 201 Psychology 3
Total 17

Winter
BIO 200 Medical Terminology 2
BUS 223 Principles of Marketing 3
or
BUS 337 Principles of Health Care Marketing 3
BUS 349 Human Resource Management 3
ECO 201N Principles of Economics, Microeconomics 3
PHIL 331 Ethics in the Professions 3
PHIL 342 Business Ethics 3
Total 14

Senior Year

Fall
BUS 308 Principles of International Business 3
or
BUS 420 Applied Management Internship 3
BUS 496 Senior Project 3
BUS 441 Leadership 3
BUS 467 Service Management 3
MIS 345 Health Care Information Systems Management 3
Total 15

Winter
BUS 316 Total Quality in Health Care 3
BUS 497 Senior Project 3
MIS 445 Legal, Ethical and Social Issues in Health Care Technology 3
Math/Science/Social Science elective (upper-division) 3
Elective (upper-division) 3
Total 15

Senior Year

Spring
BUS 308 Principles of International Business 3
or
BUS 420 Applied Management Internship 3
BUS 497 Senior Project 3
MIS 445 Legal, Ethical and Social Issues in Health Care Technology 3
Math/Science/Social Science elective (upper-division) 3
Elective (upper-division) 3
Total 15
Information Technology

Degree Offered
Bachelor of Science in Information Technology with options in:
- Accounting
- Applications Development
- Business/Systems Analysis
- Health Informatics

Objectives
The Bachelor of Science in Information Technology with its four options offers a challenging, state-of-the-art education for those interested in learning the dynamic and growing field of information technology. The field is interdisciplinary, with applications to all aspects of the economy. Graduating students are prepared to bridge the technology and management disciplines in their organizations. Core business disciplines taught include analytical skills and problem solving; business organization and management; project management; leadership, teams, and communications. In addition to the core business disciplines students choose an information technology focus in one of four options: applications development, business/systems analysis, health informatics or accounting. Each option is designed to produce graduates with the competencies necessary to succeed in the workplace or pursue further graduate level education.

Career Opportunities
The OIT Information Technology degree with four options prepares students for a wide range of professions including accounting information systems, database administration, systems analyst, business systems consultant, network analyst, software applications specialist, PC support technician, technical writer, Web administrator and as vendor representatives for both hardware and software firms. Information Technology graduates are currently employed at firms including Consolidated Freightways, Hewlett-Packard, Microsoft and Intel. Through a combination of technical skills and business understanding, Information Technology graduates are uniquely prepared for faster advancement than many of their contemporaries.

Graduation Requirements
Graduation requirements for the Bachelor of Science Degree in Information Technology include 181 credit hours for the Accounting Option, 181 credit hours for the Applications Development option, 181 credit hours for the Business/Systems Analysis option, and 181 credits for the Health Informatics option.

Accounting Option
The Information Technology Accounting Option combines coursework in accounting and information technology. Students will acquire both technical and accounting skills needed to prepare them for successful careers in accounting and accounting information systems. This unique program meets the needs of accounting students entering today’s technology-oriented marketplace. Students entering this program will receive exposure and preparation in information systems. In addition, they will develop the skills and tools required to analyze, design, and implement different types of accounting systems.

Upon graduation, students selecting this option should have sufficient knowledge to sit for the Certified Public Accountant (CPA) and the Certified Management Accountant (CMA) exams. This program prepares students for a variety of careers in accounting, financial management, management advisory services, and information technology.

Bachelor of Science in Information Technology, Accounting Option

Curriculum
Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>BUS 215 Principles of Management</td>
</tr>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
<td>ECO 201N Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>MIS 102 Spreadsheet Software Laboratory</td>
</tr>
<tr>
<td></td>
<td>Lab Science elective</td>
<td>SPE 111 Fundamentals of Speech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 122 English Composition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIS/Science/Social Science elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 201</td>
<td>Principles of Accounting I</td>
<td>ECO 202N Principles of Economics, Macroeconomics</td>
</tr>
<tr>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td>MIS 275 Introduction to Relational Databases</td>
</tr>
<tr>
<td>MIS 311</td>
<td>Introduction to Information Systems</td>
<td>SPE 321 Small Group and Team Communication</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>MIS/Science/Social Science elective</td>
</tr>
<tr>
<td></td>
<td>Humanities elective</td>
<td>Elective 3</td>
</tr>
<tr>
<td></td>
<td>Total 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 202</td>
<td>Principles of Accounting II</td>
<td>ACC 203 Principles of Managerial Accounting</td>
</tr>
<tr>
<td>BUS 223</td>
<td>Principles of Marketing</td>
<td>MIS 375 Decision Support Systems</td>
</tr>
<tr>
<td>MATH 371</td>
<td>Finite Mathematics and Calculus I</td>
<td>MIS/Science/Social Science elective</td>
</tr>
<tr>
<td>MIS 256</td>
<td>Hardware/Software Integration</td>
<td>Total 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 331</td>
<td>Intermediate Accounting I</td>
<td>ACC 320 Cost Accounting I</td>
</tr>
<tr>
<td>BUS 356</td>
<td>Business Presentations</td>
<td>ACC 325 Finance</td>
</tr>
<tr>
<td>MIS 312</td>
<td>Systems Analysis I</td>
<td>ACC 332 Intermediate Accounting II</td>
</tr>
<tr>
<td>MIS 341</td>
<td>Relational Database Design I</td>
<td>WRI 327 Advanced Technical Writing</td>
</tr>
<tr>
<td></td>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 333</td>
<td>Intermediate Accounting III</td>
<td>ACC 405 Accounting Information Systems</td>
</tr>
<tr>
<td>ACC 347</td>
<td>Accounting Information Systems</td>
<td>PSY 347 Organizational Behavior</td>
</tr>
<tr>
<td></td>
<td>Management Information Systems elective*</td>
<td>Total 14</td>
</tr>
</tbody>
</table>

Graduation Requirements
Graduation requirements for the Bachelor of Science Degree in Information Technology include 181 credit hours for the Accounting Option, 181 credit hours for the Applications Development option, 181 credit hours for the Business/Systems Analysis option, and 181 credits for the Health Informatics option.

Accounting Option
The Information Technology Accounting Option combines coursework in accounting and information technology. Students will acquire both technical and accounting skills needed to prepare them for successful careers in accounting and accounting information systems. This unique program meets the needs of accounting students entering today’s technology-oriented marketplace. Students entering this program will receive exposure and preparation in information systems. In addition, they will develop the skills and tools required to analyze, design, and implement different types of accounting systems.

Upon graduation, students selecting this option should have sufficient knowledge to sit for the Certified Public Accountant (CPA) and the Certified Management Accountant (CMA) exams. This program prepares students for a variety of careers in accounting, financial management, management advisory services, and information technology.
Applications Development Option

The Information Technology Applications Development Option focuses on the acquisition of theory and technical competencies to prepare students for successful careers as applications programmers. The curriculum is designed to produce graduates with the competencies, skills and attitudes necessary for success in the workplace or further graduate education. The management components include analytical skills and problem solving; business organization and management; project management; leadership, teams, and communications. Information technology skill areas include database development, applications development, Web development, technical support, telecommunications and additional technical electives.

Bachelor of Science in Information Technology, Applications Development Option

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Freshman Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 411</td>
<td>Income Tax Procedures</td>
<td>4</td>
<td>ECO 201N Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td>ACC 435</td>
<td>Auditing</td>
<td>4</td>
<td>MIS 102 Spreadsheet Software Laboratory</td>
</tr>
<tr>
<td>ACC 496</td>
<td>Senior Project</td>
<td>3</td>
<td>MIS 215 Business Application Programming</td>
</tr>
<tr>
<td>BUS 308</td>
<td>Principles of International Business</td>
<td>3</td>
<td>MIS 256 Hardware/Software Integration</td>
</tr>
<tr>
<td>BUS 318</td>
<td>Math/Science/Social Science elective</td>
<td>3</td>
<td>SPE 111 Fundamentals of Speech</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Winter</th>
<th>Freshman Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 431</td>
<td>Advanced Accounting I</td>
<td>4</td>
<td>ECO 202N Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td>ACC 497</td>
<td>Senior Project</td>
<td>3</td>
<td>MIS 272 Fundamentals of Networking I</td>
</tr>
<tr>
<td>MIS 352</td>
<td>Management Information Systems elective</td>
<td>3</td>
<td>MIS 311 Introduction to Information Systems</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 465</td>
<td>Case Studies in Accounting</td>
<td>4</td>
<td>ACC 201 Principles of Accounting I</td>
</tr>
<tr>
<td>BUS 226</td>
<td>Business Law</td>
<td>3</td>
<td>CST 116 C++ Programming I</td>
</tr>
<tr>
<td>BUS 322</td>
<td>Humanities elective</td>
<td>3</td>
<td>MIS 273 Fundamentals of Networking II</td>
</tr>
<tr>
<td>BUS 332</td>
<td>Business Law</td>
<td>3</td>
<td>MIS 312 Systems Analysis I</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 201</td>
<td>Principles of Accounting I</td>
<td>4</td>
<td>ACC 203 Principles of Managerial Accounting</td>
</tr>
<tr>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td>4</td>
<td>MATH 361 Statistical Methods I</td>
</tr>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
<td>3</td>
<td>PSY 201 Psychology</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Business/Systems Analysis Option

The Information Technology Business/Systems Analysis Option integrates technical, business, and interpersonal skills to prepare students for successful careers as business/systems analysts. The curriculum is designed to produce graduates with the competencies, skills and aptitudes necessary for success in the workplace or further graduate education. The management components include analytical skills and problem solving; business organization and management; project management; leadership, teams, and communications. Students gain theoretical and practical experience with systems analysis and design, project management, personal computers, operating systems, applications, networks, Web page design and development and databases.

Bachelor of Science in Information Technology, Business/Systems Analysis Option

Curriculum

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Senior Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
<td>MATH 111 College Algebra</td>
</tr>
<tr>
<td>MIS 115</td>
<td>Visual BASIC Programming</td>
<td>4</td>
<td>MIS 115 Visual BASIC Programming</td>
</tr>
<tr>
<td>MIS 275</td>
<td>Introduction to Relational Databases</td>
<td>3</td>
<td>MIS 275 Introduction to Relational Databases</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td>WRI 121 English Composition</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
Degree Requirements

The Health Informatics option requires 182 term hours. Required course work is outlined in the curriculum section. Transfer students should consult with the Registrar’s Office and the Management Department to determine which of their courses will satisfy OIT course requirements.

Bachelor of Science in Information Technology, Health Informatics Option

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO 201N</td>
<td>Principles of Economics, Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MIS 215</td>
<td>Business Application Programming</td>
<td>4</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>Lab Science elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 215</td>
<td>Principles of Management</td>
</tr>
<tr>
<td>BUS 223</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ECO 202N</td>
<td>Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td>PSY 201</td>
<td>Psychology</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 201</td>
<td>Principles of Accounting I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td>4</td>
</tr>
<tr>
<td>MIS 311</td>
<td>Introduction to Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 236</td>
<td>Business Presentations</td>
</tr>
<tr>
<td>MIS 256</td>
<td>Hardware/Software Integration</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 325</td>
<td>Finance</td>
<td>4</td>
</tr>
<tr>
<td>MIS 322</td>
<td>Fundamentals of Networking II</td>
<td>4</td>
</tr>
<tr>
<td>MIS 312</td>
<td>Systems Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>MIS 341</td>
<td>Relational Database Design I</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 375</td>
<td>Decision Support Systems</td>
</tr>
<tr>
<td>PSY 347</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 457</td>
<td>Business Research Methods II</td>
<td>3</td>
</tr>
<tr>
<td>MGT 461</td>
<td>Lean Management I</td>
<td>3</td>
</tr>
<tr>
<td>MIS 351</td>
<td>Enterprise Network Design I</td>
<td>4</td>
</tr>
<tr>
<td>MIS 496</td>
<td>Senior Project Management</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 452</td>
<td>Globalization or PSCI 326 World Politics in Transition</td>
</tr>
<tr>
<td>MIS 497</td>
<td>Senior Project II</td>
</tr>
<tr>
<td>MIS 498</td>
<td>Senior Project III</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

* Any MIS or CST class approved by your advisor which is not required in your program excepting CST 101 and CST 102. Alternatively, ACC 405 or any appropriate GIS course approved by your advisor.

Health Informatics Option

Objectives and Career Opportunities

The U.S. health care system is in the midst of a technology transformation, moving from paper-based records to integrated electronic health information systems. Technology transformation, specifically electronic health records, data warehouses and integrated health information systems, is changing the face of health care organizations and the delivery of care. One of the key factors in assuring a successful transformation is meeting the needs for highly qualified health informatics professionals and specialists.

The new roles for health informatics professionals are the result of the convergence of information management and information technologies. Health informatics professionals work in operational and management positions throughout the health care industry in such locales as hospitals, clinics, managed care organizations, software vendors and government agencies. Health informatics professionals are being called upon to design and use emerging information technologies with the goal of helping providers and patients access and utilize key information in both clinical and business management. Health Informatics provides support in areas such as clinical decision making, research, financial and revenue cycle management, and personal health management.
Accounting, Entrepreneurship/Small Business, and Marketing Programs

Degrees Offered
Bachelor of Science in Management, with options in:
Accounting
Entrepreneurship/Small Business Management
Marketing

Objectives
The Management curriculum integrates a solid core of business/management courses with the unique benefits of one of the country’s leading institutes of technology. Degree options include accounting, entrepreneurship/small business management, and marketing. The mission of the Management Department is to prepare leaders to manage organizations in the high technology environments of the 21st century. Students develop their abilities to contribute to an organization’s performance through hands-on experience built on a solid theoretical base. Students will also be prepared for graduate level education, such as the Master’s in Business Administration (MBA) degree.

Career Opportunities
The Management Department is known for producing “user-friendly” graduates. Graduate placement rate is among the best in the state.

Recruiters from industry and government agencies regularly visit the campus in search of Management Department bachelor degree candidates. Initial job titles include staff accountant, cost analyst, business unit manager, supervisor, marketing specialist, and sales manager.

Graduation Requirements
Graduation requirements for the Bachelor of Science degree in Management include 181 credit hours for the Entrepreneurship/Small Business Management option, 181 credit hours for the Marketing option, and 182 credit hours for the Accounting option.
Entrepreneurship/Small Business Management Option

Students selecting the entrepreneurship/small business management option should equip themselves to be managers with complete understanding of all aspects of a business—either a small business or a business unit manager in a larger business. The focus is on the unique demands placed on this type of manager. Skills in writing business plans, starting and operating a business, cash flow management, costing and pricing products and global opportunities are emphasized and developed.

Bachelor of Science in Management, Entrepreneurship/Small Business Management Option

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year

Fall
MATH 111 College Algebra 4
PSY 201 Psychology 3
WRI 121 English Composition 3
Humanities elective 3
Lab Science elective 4
Total 17

Spring
ECO 201N Principles of Management 3
ECO 202N Principles of Economics, Macroeconomics 3
MIS 275 Introduction to Relational Databases 3
SPE 321 Small Group and Team Communication 3
WRI 214 Business Correspondence 3
Humanities elective 3
Total 15

Sophomore Year

Fall
ACC 201 Principles of Accounting I 4
MATH 361 Statistical Methods I 4
MIS 311 Introduction to Information Systems 3
WRI 227 Technical Report Writing 3
Total 14

Spring
ACC 325 Finance 4
BUS 356 Business Presentations 4
BUS 456 Business Research Methods 3
MGF 321 Operations Management I 3
Total 14

Sophomore Year

Fall
BUS 223 Principles of Marketing 3
BUS 349 Human Resource Management 3
MATH 371 Finite Mathematics and Calculus I 4
PHIL 331 Ethics in the Professions 3
Math/Science/Social Science elective 3
Total 16

Spring
ACC 203 Principles of Managerial Accounting 4
BUS 397 Labor Relations 3
MIS 225 Business on the Internet 4
MIS 375 Decision Support Systems 3
Total 14

Marketing Option

The marketing option provides students with a broad background in business management with a strong emphasis in modern marketing concepts and practices. Marketing graduates enjoy careers in management, advertising, research, consulting, distribution, sales and entrepreneurial enterprises. This program provides the student with a core of management courses, in-depth business
Bachelor of Science in Management, Marketing Option

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>COM 205: Intercultural Communication</td>
<td>BUS 420: Principles of Management or Applied Management Internship</td>
</tr>
<tr>
<td></td>
<td>MATH 111: College Algebra</td>
<td>ECO 201N: Principles of Economics, Microeconomics</td>
</tr>
<tr>
<td></td>
<td>PSY 201: Psychology</td>
<td>BUS 496: Senior Project</td>
</tr>
<tr>
<td></td>
<td>WRI 121: English Composition</td>
<td>BUS 435: New Product Development</td>
</tr>
<tr>
<td></td>
<td>Total 17</td>
<td>Total 15</td>
</tr>
<tr>
<td>Sophomore</td>
<td>ACC 201: Principles of Accounting I</td>
<td>BUS 473: Marketing Plan Development</td>
</tr>
<tr>
<td></td>
<td>MATH 361: Statistical Methods I</td>
<td>BUS 497: Business elective</td>
</tr>
<tr>
<td></td>
<td>MIS 311: Introduction to Information Systems</td>
<td>Total 15</td>
</tr>
<tr>
<td></td>
<td>WRI 227: Technical Report Writing</td>
<td>Total 15</td>
</tr>
<tr>
<td></td>
<td>Total 14</td>
<td>Total 15</td>
</tr>
<tr>
<td>Senior</td>
<td>BUS 223: Principles of Marketing</td>
<td>BUS 434: Global Marketing</td>
</tr>
<tr>
<td></td>
<td>MATH 371: Finite Mathematics and Calculus I</td>
<td>BUS 478: Cases in Strategy and Policy</td>
</tr>
<tr>
<td></td>
<td>PHIL 331: Ethics in the Professions</td>
<td>WRI 420: Document Design</td>
</tr>
<tr>
<td></td>
<td>Total 16</td>
<td>Total 15</td>
</tr>
</tbody>
</table>

Operations Management

Degree Offered

Bachelor of Science in Operations Management

Objectives

The Operations Management program prepares students for leadership positions in the production and service industries. Students should develop mastery of concepts, tools, and skills in management sciences and specialties. Particular emphasis is directed toward developing the ability to contribute significantly to the improvement of productivity in a quality oriented environment and to manage effectively in a team based work environment. Students will also be prepared for graduate level education, such as the Master's in Business Administration degree.

Career Opportunities

Recruiters from industry and government agencies regularly visit the campus in search of bachelor's degree candidates in operations management. Initial job titles include: production planner, inventory control analyst, industrial engineer, production supervisor, and quality control manager. Typical departments in which graduates find themselves working are manufacturing, manufacturing engineering, industrial engineering, production control, finance, and quality assurance.

Students selecting the Operations Management degree will equip themselves to be managers in the challenging environment of modern manufacturing and service industries. Upon graduation they should be prepared to address critical issues related to productivity management in a global competitive economy and play leadership roles in the design and implementation of quality control and management programs. They will have mastered a wide array of microcomputer technology and software applications, giving them a competitive edge in the job market.
Graduation Requirements
As prescribed by the Management Department, graduation requirements for the Bachelor of Science degree in Operations Management include 180 credit hours.

Bachelor of Science in Operations Management

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year
- Fall
 - BUS 215 Principles of Management 3
 - PSY 201 Psychology 3
 - WRI 121 English Composition 3
 - Humanities elective
 - Elective 3
 - Total 15

- Winter
 - MATH 371 Principles of Mathematics 3
 - MICRO 323 Marketing 3
 - WRI 122 English Composition 3
 - Humanities elective
 - Elective 3
 - Total 14

Sophomore Year
- Fall
 - ACC 201 Principles of Accounting I 4
 - MGT 361 Statistical Methods I 4
 - MIS 311 Introduction to Information Systems 3
 - Math/Science/Social Science elective
 - Elective 3
 - Total 17

- Winter
 - BUS 226 Business Law 3
 - ECO 202N Principles of Economics, Microeconomics 3
 - MATH 372 Finite Mathematics and Calculus I 4
 - Math/Science/Social Science elective
 - Elective 3
 - Total 16

Sophomore Year
- Spring
 - ACC 203 Principles of Managerial Accounting 4
 - BUS 356 Business Presentations 4
 - BUS 456 Business Research Methods 3
 - SPE 321 Small Group and Team Communication 3
 - Total 14

- Junior Year
 - Fall
 - ACC 325 Finance 4
 - BUS 457 Business Research Methods II 3
 - MGT 321 Operations Management I 3
 - MGT 461 Lean Management I 3
 - Math/Science/Social Science elective 3
 - Total 16

 - Winter
 - MGT 322 Operations Management II 3
 - MGT 462 Lean Management II 3
 - WRI 327 Advanced Technical Writing 3
 - Math/Science/Social Science elective
 - Elective 3
 - Total 15

 - Spring
 - MGT 323 Operations Management III 3
 - MGT 445 Project Management 3
 - MGT 463 Lean Management III 3
 - MIS 375 Decision Support Systems 3
 - Elective 3
 - Total 15

 - Senior Year
 - Fall
 - BUS 467 Service Management 3
 - BUS 420 Applied Management Internship 3
 - BUS 496 Senior Project 3
 - Lab Science elective
 - Elective 3
 - Elective 3
 - Total 16

 - Winter
 - ANTH 452 Globalization 3
 - or PSCI 326 World Politics in Transition 3
 - BUS 497 Senior Project 3
 - PHIL 331 Ethics in the Professions 3
 - PSY 347 Organizational Behavior 3
 - Elective 3
 - Total 15

 - Spring
 - BUS 478 Cases in Strategy and Policy 3
 - Math/Science/Social Science elective
 - Elective 3
 - Elective 3
 - Total 12

Bachelor of Applied Science in Technology and Management (pending approval)
The Bachelor of Applied Science (BAS) in Technology and Management degree is designed specifically for students who have completed a technical Associate of Applied Science (AAS) or Associate of Science (AS) degree and are seeking career advancement into management or in their technical career fields. The BAS builds on a core of 60 credits of career and technical education (CTE) courses taken as part of the AAS or AS degree, adding 65 credits of business, management, and information technology courses and 55 credits of broad-based general education courses to enable the BAS graduate to advance in the workplace or continue on to graduate school. The management core includes a two-term capstone senior project to enable the student to demonstrate successful integration of the technical and managerial coursework. The BAS is offered in Klamath Falls, Portland, and online.

Depending on the specific AAS or AS degree, a student entering the BAS program should have completed at least 60 CTE credits and some additional credits that would apply to general education or lower-division major requirements.

Graduation Requirements
The BAS in Technology and Management requires 181 credits including 62 upper-division credits and 60 lower-division career and technical education (CTE) credits transferred from an AAS or AS degree. In addition, the BAS includes 55 general education credits including 18 credits in communication, 12 credits of social science, nine credits in humanities and 16 credits of math and science including four credits of mathematics with a prerequisite of intermediate algebra or higher and four credits of laboratory science.

Business Minor
The Minor in Business recognizes the achievement of 23 credits in business courses, some of which can be related to the student’s chosen profession. Some of the courses may be included in the student’s requirements for a bachelor’s degree from OIT. The Minor in Business may prove valuable to a technical student who ventures into management or consulting in his or her career field. It may enhance employability and improve graduate school possibilities. This minor is open to all majors except those in the Management Department.
Requirements of Minor:
ACC 201 Principles of Accounting I 4
ACC 203 Principles of Managerial Accounting 4
BUS 215 Principles of Management 3
or
BUS 304 Engineering Management 3
or
BUS 317 Health Care Management 3
BUS 223 Principles of Marketing 3
or
PST 347 Organizational Behavior 3

And two courses chosen from upper-division BUS or MGT courses not on the required list, or MIS 311 or PSY 410.

A passing grade and a cumulative GPA of 2.0 or better in the business minor courses is required. Students are encouraged to consult with a Management Department advisor to select business courses that would be most applicable to their major and/or career goals.

Information Technology Minor
The Information Technology (IT) Minor recognizes the achievement of 29 credits in technical courses. Some of the courses may be included in the student's requirements for a bachelor's degree from OIT. The IT minor may prove valuable to management or technical students who want to demonstrate that they have additional skills in management information system and information technology areas. It may enhance employability and improve graduate school possibilities. The minor is open to all majors except IT.

Requirements of Minor:
MIS 115 Visual BASIC Programming 4
or
Programming elective 4
MIS 215 Business Application Programming 4
or
Programming elective 4
MIS 275 Introduction to Relational Databases 5
MIS 311 Introduction to Information Systems 3
MIS 312 Systems Analysis I 4
MIS 341 Relational Database Design I 4
MIS 342 Relational Database Design II 4
MIS 375 Decision Support Systems 3

International Business Minor
The Minor in International Business recognizes the achievement of 22 credits in international courses. The Minor in International Business may prove valuable to a technical student who ventures into management or consulting in his or her career field. It may enhance employability and improve graduate school possibilities. This minor is open to all majors and is especially recommended for students with an interest in management and/or global affairs.

Requirements of Minor:
BUS 308 Principles of International Business 3
COM 205 Intercultural Communication 3
BUS 387 International Human Resource Management 3
or
PSCI 326 World Politics in Transition 3
or
PSCI 497 United States Foreign Policy 3
BUS 434 Global Marketing 3
ECO 367 International Economics and Finance Management 4
MIS 311 Introduction to Information Systems 3
PSI 250 Introduction to World Politics 3
Total 22

Suggested Social Science Electives
GEOG 106 Cultural Geography I 3
HIST 103 History of Western Civilization 3
PSCI 326 World Politics in Transitions 3
PSCI 497 United States Foreign Policy 3

Suggested Open Electives
COM 320 Advanced Intercultural Communication 3
Any foreign language sequence 4-4-4

Suggested Humanities Electives
Any second year foreign language sequence 4-4-4

Strongly Recommended
Study Abroad Program— 1 semester/2 terms 4-4-4

A passing grade in all courses and a cumulative GPA of 2.0 or better is required to be awarded the minor. Students are encouraged to consult with a management advisor to schedule courses.

Specialization Programs
OIT offers four specializations as a complement to the three Bachelor of Science degree options in Management. These are Accounting, Entrepreneurship and Small Business, Marketing, and Travel and Tourism. The courses in the Accounting, Entrepreneurship and Small Business, and Marketing specializations have been selected from the curricular content of the three corresponding degree options. The courses in the Travel and Tourism specialization have been developed specifically for this specialization. They are online courses offered by the Department of Management through Distance Education.

Accounting
OIT’s specialization in Accounting prepares the student for a wide range of accounting-related positions in modern technological industries, financial institutions and other service-oriented businesses. The program includes training in computer software essential to accounting functions. This hands-on exposure can qualify the student for work in many high technology industries which utilize computer accounting applications.

Required Courses
ACC 201 Principles of Accounting I 4
ACC 202 Principles of Accounting II 4
ACC 203 Principles of Managerial Accounting 4
ACC 205 Computerized Accounting 3
MIS 101 Word Processing Software Laboratory 1
MIS 102 Spreadsheet Software Laboratory 1
MIS 103 Presentation Graphic Software Laboratory 1

Entrepreneurship and Small Business Management
OIT’s specialization in Entrepreneurship/Small Business provides the student with foundational skills and background in business management emphasizing entrepreneurship. The student should learn skills needed to start a business successfully, gain the knowledge required to run small businesses, and develop the entrepreneurship skills to make big companies run like small companies.

Required Courses
BUS 215 Principles of Management 3
BUS 223 Principles of Marketing 3
BUS 314 Entrepreneurship 3
BUS 335 Small Business Management 3
BUS 434 Global Marketing 3
BUS 447 Controversial Issues in Management 3

Marketing
OIT’s specialization in Marketing provides the student with a foundational background in business management with an emphasis in modern marketing concepts and practices. Upon completion, the student should be better qualified for a career in management, advertising, consulting, distribution or sales.

Required Courses
BUS 215 Principles of Management 3
BUS 223 Principles of Marketing 3
BUS 318 Consumer Behavior 3
BUS 319 Advertising Management 3
BUS 326 Sales and Sales Management 3
Travel and Tourism
OIT’s 15 credit online specialization in Travel and Tourism provides students with a broad foundational background in the hospitality and tourism industries. The information contained in these courses is important for anyone interested in learning more about the travel industry or who likes to travel. This specialization also gives students the knowledge necessary to obtain entry level positions in the hospitality and tourism industries.

Required Courses
BUS 309 Introduction to Tourism 3
BUS 347 Geography of Travel and Tourism 3
BUS 350 Hospitality Management 3
BUS 358 Marketing for Hospitality and Tourism 3
or
BUS 399 Marketing Special Topics: Marketing Tourism 3
BUS 385 Ecotourism 3

Six Sigma Green Belt Emphasis
The Management Department offers students the opportunity to earn a Six Sigma Green Belt certification. The Green Belt certification is an emphasis under the Bachelor of Science in Management, Entrepreneurship/Small Business Management option or the Operations Management degree program. In addition to the fundamental management curriculum, the emphasis requires additional coursework in chemistry, management information systems, humanities, history, economics and management. Those attaining the emphasis will be prepared to successfully integrate skills in the social, environmental, economic, business and management aspects of energy management.

Requirement of Emphasis
CHE 201 General Chemistry 3
CHE 204 General Chemistry Laboratory 1
or
PHY 201 General Physics 4
MATH 112 Trigonometry 4
ECO 357 Energy Economics and Policy 3
HIST 356 A History of Energy 3
HUM 125 Introduction to Technology, Society and Values 3

Additional Courses
BUS 457 Business Research Methods II 3
MGT 445 Project Management 3
MGT 461 Lean Management I 3
MGT 462 Lean Management II 3
MGT 463 Lean Management III 3
BUS 496 Senior Project 3
BUS 497 Senior Project 3

It should be noted that for OM majors, all of these courses are currently in the curriculum map. No additional coursework is required with the exception that the Senior Project series must be a Six Sigma project.

Renewable Energy Management Emphasis
The Management Department offers students the opportunity to complete a Renewable Energy Management emphasis under the Bachelor of Science in Management, Entrepreneurship/Small Business Management option or the Operations Management degree program. In addition to the fundamental management curriculum, the emphasis requires additional coursework in chemistry, management information systems, humanities, history, economics and management. Those attaining the emphasis will be prepared to successfully integrate skills in the social, environmental, economic, business and management aspects of energy management.

Requirement of Emphasis
CHE 201 General Chemistry 3
CHE 204 General Chemistry Laboratory 1
or
PHY 201 General Physics 4
MATH 112 Trigonometry 4
ECO 357 Energy Economics and Policy 3
HIST 356 A History of Energy 3
HUM 125 Introduction to Technology, Society and Values 3

Additional courses
BUS 457 Business Research Methods II 3
MGT 445 Project Management 3
MGT 461 Lean Management I 3
MGT 462 Lean Management II 3
MGT 463 Lean Management III 3
BUS 496 Senior Project 3
BUS 497 Senior Project 3

It should be noted that for OM majors, all of these courses are currently in the curriculum map. No additional coursework is required with the exception that the Senior Project series must be a Six Sigma project.

Post Baccalaureate Certificate in Accounting
This certificate is available to students who have a baccalaureate degree and are continuing their education in accounting. Completion of the certificate will allow students to meet the requirements for admission to the Certified Public Accountant (CPA) exam and prepare them for a variety of career paths including CPA and Certified Management Accountant (CMA).

Required Courses (32 credits)
ACC 320 Cost Accounting I 4
ACC 331 Intermediate Accounting I 4
ACC 332 Intermediate Accounting II 4
ACC 333 Intermediate Accounting III 4
ACC 405 Accounting Information Systems 4
ACC 411 Income Tax Procedures 4
ACC 431 Advanced Accounting I 4
ACC 435 Auditing 4

Elective Courses (Choose at least 15 credits from the following courses)
ACC 321 Cost Accounting II 4
ACC 325 Finance 4
ACC 412 Corporate Taxation 4
ACC 432 Advanced Accounting II 4
ACC 465 Case Studies in Accounting 4
BUS 226 Business Law 3
BUS 345 Fraud Examination 3
MIS 312 Systems Analysis I 4

Note: At least 36 credits must be taken at OIT.
University Departments

Manufacturing and Mechanical Engineering and Technology Department

Brian Moravec, Department Chair

Joe Stuart, Program Director, Undergraduate Manufacturing Engineering Technology

Wangping Sun, Program Director, Graduate Manufacturing Engineering Technology

Hugh Currin, Program Director, Mechanical Engineering

David Culler, Program Director, Mechanical Engineering Technology

Geoffrey Peter, Program Director, Portland Programs

Vacant, Program Director, OIT–Seattle

Professors: H. Currin, R. Shih, B. Moravec, L. Wolf

Associate Professors: J. Anderson, D. Culler, N. Mead, W. Sun

Assistant Professors: I. Demeshko-Prosnik, G. Peter, S. Sloan, J. Stuart

Degrees Offered
Master of Science in Manufacturing Engineering Technology
Bachelor of Science in Manufacturing Engineering Technology

Program Mission Statement
The Manufacturing Engineering Technology Program at Oregon Institute of Technology is an applied engineering technology program. Its mission is to provide graduates with the skills and knowledge for successful careers in Manufacturing Engineering Technology.

Program Educational Objectives
Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. The Program Educational Objectives of OIT’s Manufacturing Engineering Technology Program are to produce graduates who:

- are able to analyze and design practical mechanical and manufacturing systems.
- communicate effectively and work well on team-based engineering projects.
- succeed in entry-level manufacturing engineering positions.
- pursue continued professional development.

Career Opportunities
Manufacturing Engineering graduates will find a wide range of opportunities for employment in manufacturing design, research and development, testing, educational institutions, consulting and business. Manufacturing Engineering Technology also prepares students for further study in graduate school. In today’s engineering environment, manufacturing engineers are often called upon to perform a wide range of tasks, from designing and purchasing manufacturing equipment to improving and troubleshooting the manufacturing process. Manufacturing engineers are involved in the design and continuous improvement of products, manufacturing equipment and production tooling. The Manufacturing Engineering curriculum provides education in a variety of areas including manufacturing process, robotics and automation, industrial controls, manufacturing tool design, computer aided design and manufacturing, engineering materials, manufacturing planning and quality control. Technical electives allow the student flexibility in developing technical breadth or focus in their areas of interest.

Bachelor Program Objectives
The objective of the Manufacturing Engineering Technology undergraduate program is to offer the student a quality education that provides the greatest possible opportunity for rewarding and successful careers. This includes practical training and technical education in engineering, manufacturing processes, and manufacturing equipment as well as supplemental coursework in communications, mathematics, science, social science, and business.

Master Program Objectives
The objective of the graduate program in Manufacturing Engineering Technology is to offer students an advanced level of education that will help them to be successful in their professional career. This includes the theoretical and practical training in manufacturing systems, design for manufacturability, development of lean enterprise, quality engineering, computer-aided manufacturing, project management and information systems. The master’s degree is also available online to students meeting the admission requirements for the program. There are no residency requirements for this degree. The same degree requirements apply to the online program.

Student Preparation
Students planning to enter the Manufacturing Engineering Technology Program are strongly encouraged to take mathematics and science training in high school. In addition, courses such as drafting, CAD, computer skills, and industrial arts will prove beneficial.
Cooperative Education Program
Students in the bachelor of science degree program have an opportunity to work in industry for a specified time and receive college credit. They are encouraged to meet with the Manufacturing Engineering Technology Undergraduate Program Director. MFG students have the opportunity to participate in the state-wide MECOP internship program. For information, see the following Web site: http://mecop.ous.edu.

Accreditation
The Bachelor of Science in Manufacturing Engineering Technology is accredited by the Technology Accreditation Commission (TAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Degree Requirements—Master of Science
The Master of Science in Manufacturing Engineering Technology requires completing 45 credit hours of graduate work, with at least 30 credit hours of graduate coursework from the following four Curriculum Content Areas (CCAs):
1. Engineering Science and Design Technology
2. Manufacturing Software and Computer Integration
3. Advanced Manufacturing Materials and Processes Technology

In addition to the 30 CCA credit hours, students must complete 12 credits toward thesis or 9 credits toward an approved project and three credits in graduate seminars. Students must take at least one course in each of the four CCAs and three courses in at least one CCA. All graduate courses are three credits each. See Master’s student advisor to complete an academic plan.

Degree Requirements
The Bachelor of Science in Manufacturing Engineering Technology requires completing 192 credit hours, as prescribed in the following curriculum outline. Several of these courses are titled Manufacturing elective, and allow the student some flexibility to pursue specific career objectives within the manufacturing engineering field. Upper-division manufacturing engineering technology courses not specifically required for graduation, as well as selected upper-division mechanical engineering technology courses and other approved courses, may be used as Manufacturing electives. Students should contact their advisor for specific details as to which courses qualify as manufacturing electives.

In order to satisfy the engineering science elective, the student must complete one of the following courses: Dynamics (ENGR 212), Fluid Mechanics (MET 218), or Thermodynamics (ENGR 355). In order to satisfy the business/management restricted elective the student must complete one of the following courses: BUS 226, BUS 304, BUS 355, MGT 321, MGT 461, or MGT 462.

Bachelor of Science in Manufacturing Engineering Technology

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year	Fall						Total
---------------	------------						15
MATH 111	College Algebra	4					
MET 111	Orientation I	2					
WRI 121	English Composition	3					
	Humanities/Social Science elective *	3					
	Humanities/Social Science elective *	3					
Total		15					

Freshman Year	Winter						Total
---------------	------------						17
CHE 103	Elementary Chemistry	3					
CHE 104	Elementary Chemistry Laboratory	1					
MFG 120	Manufacturing Processes I	4					
MATH 112	Trigonometry	4					
MET 112	Orientation II	2					
WRI 122	English Composition	3					
Total		17					

Sophomore Year	Fall						Total
----------------	------------						16
MFG 314	Geometric Dimensioning and Tolerancing	3					
MATH 252	Integral Calculus	4					
MET 160	Materials I	3					
MET 242	CAD for Mechanical Design I	2					
PHY 201/221	General Physics	4					
Total		16					

Sophomore Year	Winter						Total
----------------	------------						17
ENGR 211	Statics **	4					
MFG 112	Introduction to Manufacturing Processes	3					
MATH 361	Statistical Methods I	4					
PHY 202/222	General Physics	4					
Total		17					

Junior Year	Fall						Total
-------------	------------						15
MFG 313	Manufacturing Analysis and Planning	3					
MFG 341	Numeric Control Programming	3					
MET 315	Machine Design I	3					
MET 375	Solid Modeling	3					
MET 360	Materials II	3					
Total		15					

Junior Year	Winter						Total
-------------	------------						18
MFG 333	Statistical Methods for Quality Improvement	3					
MFG 342	Computer Aided Machining	3					
MFG 343	Manufacturing Tool Design	3					
MET 316	Machine Design II	3					
MET 326	Electric Power Systems	3					
	Humanities/Social Science elective *	3					
Total		18					

Junior Year	Spring						Total
-------------	------------						15
MGT 345	Engineering Economy	3					
MFG 331	Industrial Controls	3					
MFG 344	Design of Manufacturing Tooling	3					
SPE 321	Small Group and Team Communication	3					
	BUS/MGT restricted elective ****	3					
Total		15					
The concurrent degree program usually requires the student to complete an additional 18 credits of coursework beyond the MET or MECH degree. In all cases the student must have at least 36 credits of additional coursework beyond the MET or MECH degree to qualify for the concurrent degree. MGT 461 or MGT 462.

Career Opportunities

Mechanical Engineering is the broadest branch of engineering providing graduates the ability to pursue many varied career paths. It encompasses a wide variety of specialties including alternative energy, mechanical design, thermal/fluids/heat transfer, and mechatronics to name a few. Graduates will find a wide range of opportunities for employment in design, research and development, including professional registration if desired.

The Mechanical Engineering degree also prepares the students for further study in graduate school.

Objectives of the Program

The Mechanical Engineering Program at Oregon Institute of Technology provides an excellent theoretical and applied “hands-on” engineering education. The program provides graduates with a foundation in fundamentals, applications, design, project management, communications, and professional and ethical responsibility.

The program offers coursework in all of the above areas beginning with mathematics, science, machining, welding, and computer aided design topics in the freshman year. Engineering science and physics courses are typically taken by the student in the sophomore year. Junior and senior curriculum is devoted to analysis, design, and testing aspects of mechanical engineering. Technical electives are available for students to pursue their particular fields of interest.

Senior Year

Fall

- ANTH 452: Globализация 3
- MFG 453: Automation and Robotics in Manufacturing 3
- MFG 454: Thermal Systems for Manufacturing 3
- MFG 461: Senior Project I 3
- WRI 327: Advanced Technical Writing 3
- Engineering Science elective *** 3
- Total 18

Winter

- MFG 462: Senior Project II 3
- BUS/MGT restricted elective ***** 3
- Humanities/Social Science elective * 3
- Manufacturing elective **** 3
- Manufacturing elective **** 3
- Total 15

Spring

- ENGR 485: Fundamentals of Engineering Exam 1
- ENGT 415: Occupational Safety 3
- MFG 447: Lean Manufacturing 3
- MFG 463: Senior Project III 3
- Humanities/Social Science elective * 3
- Manufacturing elective **** 3
- Total 16

* Humanities/Social Science requirements: 9 credits of Humanities electives and 9 credits of Social Science electives. ANTH 452 Globalization counts as 3 Social Science credits.

** ENGR 230, ENGR 231, ENGR 232 sequence may be substituted for the ENGR 211, ENGR 213 sequence.

*** Engineering Science elective: complete one of the following courses: Dynamics (ENGR 212), Fluid Mechanics (MET 218), or Thermodynamics (ENGR 355).

**** Manufacturing elective: selected Manufacturing and/or Mechanical Engineering Technology courses. Consult with your advisor for a list of approved courses.

***** Business/Management restricted elective: complete one of the following courses: BUS 226, BUS 304, BUS 335, MGT 321, MGT 461, or MGT 462.

Fall

- MFG 313: Manufacturing Analysis and Planning 3
- MFG 341: Numerical Control Programming 3
- MFG 453: Automation and Robotics in Manufacturing 3
- BUS/MGT restricted elective* Manufacturing elective *** 3
- Total 15

Winter

- MFG 112: Introduction to Manufacturing Processes** 3
- MFG 333: Statistical Methods for Quality Improvement 3
- MFG 342: Computer Aided Machining 3
- MFG 343: Manufacturing Tool Design 3
- BUS/MGT Restricted elective* Manufacturing elective * 3
- Total 18

Spring

- ENGT 415: Occupational Safety 3
- MFG 344: Design of Manufacturing Tooling 3
- MFG 428: Manufacturing Engineering Certification 1
- MFG 447: Lean Manufacturing 3
- MATH 362: Statistical Methods II 4
- Total 14

* Restricted elective from the following courses: BUS 226, BUS 304, BUS 335, MGT 321, MGT 461 or MGT 462.

** This course is already required for the BSMET degree.

*** These courses must be different than those used to satisfy the BS degree in MET or MECH. In all cases the student must have at least 36 credits of additional coursework beyond the MET or MECH degree to qualify for the concurrent degree in MFG.

Mechanical Engineering

Degree Offered

Bachelor of Science in Mechanical Engineering

Program Mission Statement

The Mechanical Engineering Program at Oregon Institute of Technology is an applied engineering program. Its mission is to provide graduates the skills and knowledge for successful careers in mechanical engineering.

Program Educational Objectives

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing alumni to achieve within five years of graduation. The Program Educational Objectives of OIT’s Mechanical Engineering Program state alumni will:

- be able to analyze, design and improve practical thermal and mechanical systems.
- communicate effectively and work well on team-based engineering projects.
- succeed in entry-level mechanical engineering positions regionally and nationally.
- pursue continued professional development, including professional registration if desired.
- have the skills and knowledge to pursue engineering graduate studies and research, if desired.

Concurrent Degree

The Mechanical and Manufacturing Engineering Technology Department provides the opportunity for the interested student to earn concurrent degrees in Manufacturing Engineering Technology (MFG) and Mechanical Engineering Technology (MET) or Mechanical Engineering (MECH). Students who earn both degrees are highly sought after and have been very successful in industry. The concurrent degree program usually requires the student to complete an additional year of study beyond the Bachelor’s Degree in Mechanical Engineering or Mechanical Engineering Technology.
Throughout the four-year curriculum, emphasis is placed on oral and written communication skills, teamwork and cooperation, and hands-on laboratory and project work. Graduates are well-rounded engineers and readily accepted into industry or graduate programs.

Student Preparation

Students planning to enter the Mechanical Engineering curriculum should undertake mathematics-science training in high school. Such courses as algebra, trigonometry, calculus, physics, chemistry, drafting, CAD, writing, speech, and shop classes will prove beneficial.

Cooperative Field Experience

There is an opportunity for students in the bachelor of science degree program to work in industry for a specified time and receive college credit. Those interested in such an opportunity are encouraged to work out the details with the Mechanical Engineering Program Director. Mechanical Engineering students have the opportunity to participate in the state-wide MECOP internship program. For information, see the following Web site: http://mecop.ous.edu.

Accreditation

The Mechanical Engineering Program is accredited by the Engineering Accreditation Commission (EAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/or the Secretary of the U.S. Department of Education.

Degree Requirements

In the curriculum listings appear several courses titled “MECH elective.” MECH electives allow the student to select and pursue specific career objectives within the mechanical engineering field. MECH electives are upper-division MECH courses, not specifically required for graduation.

Students from other institutions should refer to the sections of this catalog titled “Transfer Students” and “Admission to Baccalaureate Programs.”

The Bachelor of Science in Mechanical Engineering requires 193 credit hours as prescribed in the following curriculum outline.

Bachelor of Science in Mechanical Engineering

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 221</td>
<td>General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>MET 111</td>
<td>Orientation I</td>
<td>2</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Freshman Year Winter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 222</td>
<td>General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>MET 112</td>
<td>Orientation II</td>
<td>2</td>
</tr>
<tr>
<td>MFG 103</td>
<td>Introductory Welding Processes</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Freshman Year Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MFG 120</td>
<td>Manufacturing Processes I</td>
<td>4</td>
</tr>
<tr>
<td>MET 160</td>
<td>Materials I</td>
<td>2</td>
</tr>
<tr>
<td>MET 241</td>
<td>CAD for Mechanical Design I</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MET 242</td>
<td>CAD for Mechanical Design II</td>
<td>2</td>
</tr>
<tr>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year Winter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 211</td>
<td>Statics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 254N</td>
<td>Vector Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 266</td>
<td>Computer Programming for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 213</td>
<td>Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 236</td>
<td>Fundamentals of Electric Circuits</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Applied Differential Equations I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 223</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 341</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MFG 314</td>
<td>Geometric Dimensioning and Tolerancing</td>
<td>3</td>
</tr>
<tr>
<td>MECH 318</td>
<td>Fluid Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>MECH 363</td>
<td>Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>MET 375</td>
<td>Solid Modeling</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year Winter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 212</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 355</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 315</td>
<td>Machine Design I</td>
<td>3</td>
</tr>
<tr>
<td>MECH 360</td>
<td>Materials II</td>
<td>3</td>
</tr>
<tr>
<td>MET 326</td>
<td>Electric Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM 125</td>
<td>Introduction to Technology, Society and Values</td>
<td>3</td>
</tr>
<tr>
<td>MATH 451</td>
<td>Numerical Methods I</td>
<td>4</td>
</tr>
<tr>
<td>MECH 313</td>
<td>Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>MECH 316</td>
<td>Machine Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Senior Year Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 323</td>
<td>Heat Transfer I</td>
<td>3</td>
</tr>
<tr>
<td>MECH 351</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MECH 490</td>
<td>Senior Projects I</td>
<td>3</td>
</tr>
<tr>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Senior Year Winter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 417</td>
<td>Fluid Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>MECH 437</td>
<td>Heat Transfer II</td>
<td>2</td>
</tr>
<tr>
<td>MECH 480</td>
<td>Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MECH 491</td>
<td>Senior Projects II</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 331</td>
<td>Ethics in the Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 485</td>
<td>Fundamentals of Engineering Exam</td>
<td>1</td>
</tr>
<tr>
<td>MGT 345</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>MECH 436</td>
<td>Applied Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>MECH 492</td>
<td>Senior Projects III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

* In addition to HUM 125, PHIL 331 and the Economics elective students must take 3 credits of Humanities and 9 credits of Social Science. Activity or performing based Humanities courses are not accepted.
Mechanical Engineering Technology

Degree Offered
Bachelor of Science in Mechanical Engineering Technology

Program Mission Statement
The Mechanical Engineering Technology Program at Oregon Institute of Technology is an applied engineering technology program. Its mission is to provide graduates with the skills and knowledge for successful careers in mechanical engineering and manufacturing.

Program Educational Objectives
Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. The Program Educational Objectives of OIT’s Mechanical Engineering Technology Program are to produce graduates who:

• are able to analyze and design practical mechanical systems.
• communicate effectively and work well on team-based engineering projects.
• succeed in entry-level mechanical and manufacturing engineering positions.
• pursue continued professional development.

Career Opportunities
Mechanical Engineering Technology graduates find a wide range of opportunities for employment in design, research and development, testing, manufacturing, government agencies, educational institutions, consulting and business. The largest number of graduates are employed by manufacturing firms. There, the graduates may develop new products, improve existing products, modify existing products for easier manufacture, or develop equipment for use in the production process. The work done by Mechanical Engineering Technologists varies widely. Interfacing computers and machines is a rapidly growing area of employment. This involvement with robotics and automation is having an impact on most mechanical systems. New materials such as high strength ceramics and polymers, fiber reinforced plastics, and new bonding agents are growing in importance, and their applications will offer many interesting and fulfilling careers. Energy systems become increasingly important as energy costs rise. Aerospace firms employ many OIT graduates in design, testing, and manufacturing. Careers in such traditional areas as power plants, heating and cooling systems, gas and steam turbines, and automotive systems are within the domain for the Mechanical Engineering Technologist.

Objectives of the Program
The objective of the Mechanical Engineering Technology Program is to ensure that graduates of this curriculum acquire competency in those theoretical, applied engineering and practical subjects necessary to become successful in their careers. The program strives to maintain a reputation for academic standards that will assure graduates a welcome by prospective employers.

Student Preparation
Students planning to enter the Mechanical Engineering Technology curriculum should undertake mathematics-science training in high school. Such courses as algebra, geometry, trigonometry, physics, chemistry, drafting, CAD, English, writing, speech, and shop classes will prove beneficial.

Cooperative Field Experience
There is an opportunity for students in the bachelor of science degree program to work in industry for a specified time and receive college credit. Those interested in such an opportunity are encouraged to work out the details with the Mechanical Engineering Technology program director. MET students have the opportunity to participate in the state-wide MECOP internship program. For information, see the following Web site: http://mecop.ous.edu.

Accreditation
The Mechanical Engineering Technology Program is accredited by the Engineering Accreditation Commission (EAC) of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. ABET is a specialized accrediting board recognized by the Council for Higher Education and/ or the Secretary of the U.S. Department of Education.

Degree Requirements
In the curriculum listings appear several courses titled “MET elective.” MET electives allow the student to select and pursue specific career objectives within the mechanical engineering technology field. MET electives are upper-division MET courses, not specifically required for graduation.

Students from other institutions should refer to the sections of this catalog titled “Transfer Students” and “Admission to Baccalaureate Programs.” The Bachelor of Science in Mechanical Engineering Technology requires 190 credit hours as prescribed in the following curriculum outline.

Bachelor of Science in Mechanical Engineering Technology

Curriculum
Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Che 101</td>
<td>Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Che 104</td>
<td>Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Math 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Met 111</td>
<td>Orientation I</td>
<td>2</td>
</tr>
<tr>
<td>Wri 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Psychology elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>MET 112</td>
<td>Orientation II</td>
<td>2</td>
</tr>
<tr>
<td>MFG 103</td>
<td>Introductory Welding Processes</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MFG 120</td>
<td>Manufacturing Processes I</td>
<td>4</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MET 160</td>
<td>Materials I</td>
<td>3</td>
</tr>
<tr>
<td>MET 241</td>
<td>CAD for Mechanical Design</td>
<td>2</td>
</tr>
<tr>
<td>PHY 203</td>
<td>General Physics</td>
<td>4</td>
</tr>
<tr>
<td>Wri 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Year</td>
<td>Term</td>
<td>Course Code</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td>Winter</td>
<td>ENGR 211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 254N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFG 112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHY 202/222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>ENGR 213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 361</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHY 203/223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Junior Year</td>
<td>Fall</td>
<td>ENGR 236</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR 266</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 363</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>ENGR 212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR 355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>MGT 345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Senior Year</td>
<td>Fall</td>
<td>MET 426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 437</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPE 321</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>MET 492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFG 331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Exam****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>MGT 345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>MET 426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 437</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>MGT 345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>MET 426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 437</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

* PSY 201 Recommended

** ENGT 230, ENGT 231, ENGT 232 sequence may be substituted for the ENGR 211, ENGR 213 sequence

*** MET 232 Thermodynamics may be substituted for ENGR 355 Thermodynamics

**** Engineering Exam to be selected from:
- ENGR 485 Fundamentals of Engineering Exam
- MFG 428 Manufacturing Engineering Certification
Mathematics Department

Cristina Negoita, Department Chair
Jim Ballard, Scheduling Coordinator
Tiernan Fogarty, Advising Coordinator

Professors: B. Cornelius, J. Fischer, T. Thompson

Associate Professors: J. Ballard, T. Fogarty, C. Negoita, G. Waterman

Assistant Professors: R. Paul, J. Reid, T. Torres

General Education
Courses offered by the Department of Mathematics are designed to satisfy the needs of majors and nonmajors interested in mathematics primarily as part of a broad technical education. A major emphasis is on development of skills required to solve applied problems.

Success in mathematics requires that entering students begin their study in the course which best matches their ability and background. Accordingly, all entering students must pass a placement examination at the appropriate level before being allowed to register for their initial mathematics course.

Degree Offered
Bachelor of Science in Applied Mathematics

Minor Offered
Applied Mathematics

Program Objectives
Coursework for the bachelor’s degree is intended to provide a solid foundation of mathematical theory and a broad selection of applied work both in and outside mathematics. The prospective major will complete coursework in calculus, differential equations, and numerical methods. Students also take a sequence of introductory physics courses and a further sequence in a technical field outside mathematics.

Career Opportunities
Upon completing the requirements for the Applied Mathematics degree students will be prepared for a variety of jobs in industry including numerical modelling, signal processing, data analysis, and many others. The degree also provides students a sufficient background to further their education by entering a Masters or Ph.D. program in Mathematics or Applied Mathematics.

Student Preparation
Students entering the Applied Mathematics Program from high school should have a minimum of two years of algebra, one year of precalculus, one year of geometry, and two years of physical science (physics or chemistry preferred). Additional courses in mathematics, science, English and computer programming will be very helpful. Students entering the Applied Mathematics Program by transfer are requested to contact the Mathematics Department concerning transfer of technical course work.

Degree Requirements
In addition to the mathematics requirements listed below, students will be required to complete the 200 level calculus-based general physics sequence as well as other general education requirements and electives necessary to bring the total credit hours to 181. Please see the recommended curriculum map below.

All mathematics courses must be completed with a grade "C" or better. Transfer students should consult the Admissions Office and the Mathematics Department to determine which of their courses will satisfy OIT course requirements.

Lower-Division Required Courses
(18 credits)
MATH 221 Introduction to Computational Software
MATH 251 - MATH 254N Calculus Sequence

Upper-Division Core Requirements
(43 credits)
MATH 311 Introduction to Real Analysis
MATH 327 Discrete Mathematics
MATH 321-322 Applied Differential Equations I, II
MATH 341 Linear Algebra I
MATH 354 Vector Calculus II
MATH 361 Statistical Methods I
MATH 421 Applied Partial Differential Equations I
MATH 451 Numerical Methods I

Plus two additional courses chosen from:
MATH 422 Applied Partial Differential Equations II
MATH 423 Applied Partial Differential Equations III
MATH 452 Numerical Methods II
MATH 453 Numerical Methods III

Upper-Division Math/Physics Electives
(At least 7 credits)
Students will choose 2 upper-level mathematics or physics courses with the approval of a mathematics advisor. No more than 3 credits can be MATH 407.

Focused Electives (16 credits)
Students will choose appropriate electives from outside of mathematics. These courses should support the program objectives, and must be approved by a mathematics advisor. The focused electives must total at least 16 credits at least 9 of which are from a 3 course sequence, see below for examples.

Examples of Focused Electives Sequences
- CST 116, 126, 223 Programming Languages
- CHE 221, 222, 223 General Chemistry
- ENGR 211, 212, 213 Statics, Dynamics, Strength of Materials
- PHY 311, 312, 313 Introduction to Modern Physics

Examples of Focused Electives
- CST 313 Computer Software Techniques
- CHE 331, 332, 333 Organic Chemistry
- EET 371 Laplace Transforms and Applications
- ENGR 231 Fluid Dynamics
- ENGR 236 Fundamentals of Electric Circuits
- PSY 361 Industrial Psychology
- RDSC 356 Magnetic Resonance

Notes:
1. Some of the above courses have an additional lab requirement.
2. PHY 221, 222, 223 may not be used as focused electives.
Bachelor of Science in Applied Mathematics

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Senior Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
<td>MATH 421</td>
<td>Applied Partial Differential Equations I</td>
<td>4</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
<td>MATH 451</td>
<td>Numerical Methods I</td>
<td>4</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
<td>Focused elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Science elective</td>
<td>3</td>
<td>Math/Physics elective **</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td>Elective (upper-division)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td>Total</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Senior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
<td>MATH 362</td>
<td>Statistical Methods II</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Introduction to Computational Software</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
<td>MATH 354</td>
<td>Vector Calculus II</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Science elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Senior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 351</td>
<td>Numerical Methods I</td>
<td></td>
<td>MATH 452</td>
<td>Numerical Methods II</td>
</tr>
<tr>
<td>MATH 422</td>
<td>Applied Partial Differential Equations I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 347</td>
<td>Fundamentals of Abstract Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 346</td>
<td>Number Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 341</td>
<td>Linear Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 354</td>
<td>Vector Calculus II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 362</td>
<td>Statistical Methods I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 311</td>
<td>Introduction to Real Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 327</td>
<td>Discrete Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI 327</td>
<td>Technical Report Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focused elective*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (upper division)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Applied Mathematics Minor

The minor in Applied Mathematics provides formal recognition of mathematical proficiency. It is composed of a core of required courses and upper-division electives related to the student’s major. The minor consists of 29 credits, 19 from required courses and 10 from elective courses.

This minor is open to all majors and is especially recommended for students with an interest in pursuing a career related to mathematics. It will enhance their employability and improve graduate school possibilities.

Curriculum

1. Required courses: MATH 251, MATH 252, MATH 253N, MATH 254N and MATH 341, plus 10 additional upper-division mathematics credits selected from the list below.

2. A passing grade in all courses and a cumulative GPA of 2.0 or better is required to be awarded the minor.

3. At least 12 credits must be taken at OIT.

Students are required to consult an advisor from the Mathematics Department to select upper-division mathematics courses that would be most applicable to their major and/or career goals.

Upper-Division Electives:

- MATH 311 Introduction to Real Analysis
- MATH 321 Applied Differential Equations I
- MATH 322 Applied Differential Equations II
- MATH 327 Discrete Mathematics
- MATH 342 Linear Algebra II
- MATH 346 Number Theory
- MATH 347 Fundamentals of Abstract Algebra
- MATH 354 Vector Calculus II
- MATH 362 Statistical Methods II
- MATH 421 Applied Partial Differential Equations I
- MATH 422 Applied Partial Differential Equations II
- MATH 423 Applied Partial Differential Equations III
- MATH 425 Vector Analysis
- MATH 451 Numerical Methods I
- MATH 452 Numerical Methods II
- MATH 453 Numerical Methods III
- MATH 465 Mathematical Statistics

Note: Not all courses are offered every term or every year.
Medical Imaging Technology Department

LeAnn Maupin, Department Chair
Robyn Cole, Diagnostic Medical Sonography Program Director and Clinical Coordinator
Barry Canaday, Echocardiography Program Director and Clinical Coordinator
Richard Hoylman, Nuclear Medicine Technology Program Director and Clinical Coordinator
Jenny Kellstrom, Radiologic Science Program Director and Clinical Coordinator
Chris Caster, Vascular Technology Program Director and Clinical Coordinator
Janette Isaacson, Vascular Technology and Echocardiography Degree Completion Program Director

Professor: D. McCollam, J. Kellstrom, S. Schultz, G. Zimmerman
Associate Professors: C. Caster, T. McVay, L. Maupin
Assistant Professors: B. Canaday, R. Cole, R. Hoylman
Instructors: V. Bennett, R. Carson, T. Graham, D. McDonnell, S. Templeton
Participating Faculty: J. Isaacson (Distance Education)

Degrees Offered
Bachelor of Science in Diagnostic Medical Sonography
Bachelor of Science in Echocardiography
Bachelor of Science in Nuclear Medicine Technology
Bachelor of Science in Radiologic Science
Bachelor of Science in Vascular Technology

Specialization Offered
Picture Archiving and Communication Systems (PACS)

Department Objectives
The objectives of the Medical Imaging Technology Department are:
1. To prepare students to become effective participants in the medical imaging professions.
2. To provide the residents of Oregon and the Pacific Northwest with Bachelor of Science degrees in Medical Imaging Technology.
3. To prepare students for professions that require critical-thinking and problem-solving skills.
4. To instill an effective influence of professional character, the knowledge and experience to pass the National Registry exams.
5. To instill lifelong learning.

Accreditation
Oregon Institute of Technology is accredited by Northwest Commission on Colleges and Universities, 8060 165th Ave. NE, Suite 100, Redmond, WA 98052-3981, an institutional accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S. Department of Education.

Program Descriptions
The Department of Medical Imaging Technology offers bachelor's degrees in five professional programs, which encompass the spectrum of imaging sciences.

The curriculum of each bachelor's degree program provides the technical, scientific, and communication skills essential for the application of learned concepts. Each program prepares students for immediate employment, and for successfully passing the national and state registry examinations in each field.

Diagnostic Medical Sonography: (also called sonography, ultrasound, or general ultrasound). Sonography uses high frequency sound wave imaging and Doppler instrumentation to aid in the diagnosis of pathology and disease processes. The sonographer gathers pertinent patient history, creates images, and submits preliminary findings to the reading physician. Common exams include: obstetric, gynecological, peritoneal, retroperitoneal, pelvic, thoracic, musculoskeletal, extremity, neurological, and superficial procedures. Invasive applications are also performed in most clinical settings.

Echocardiography: Echocardiography is a safe method of obtaining ultrasound images for diagnosis of cardiac pathology in adult and pediatric patient populations. Echocardiographers conduct patient interviews, compile health histories and determine risk assessments pertaining to cardiovascular disease. The echocardiographer reports pertinent findings to the physician as part of the diagnostic process.

Nuclear Medicine Technology: Nuclear medicine is an imaging science that demonstrates pathology through physiologic processes, as opposed to detailed anatomic images. This branch of imaging science has been in existence for over four decades, and provides unique diagnostic information obtained by the patient's ingestion, inhalation, or being injected with a radioactive isotope.

Radiologic Science: This program has been in existence at OIT for more than 50 years. The training prepares the future radiologic technologist with a wide variety of skills, including radiography, fluoroscopy, mobile and surgical radiography, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Mammography, Cardiovascular Interventional Technology (CIT), Quality Assurance, and imaging department management.

Vascular Technology: Vascular technology is a profession which utilizes ultrasound, Doppler, color Doppler and various physiologic testing procedures to aid in the diagnosis of disease of the vascular system. Vascular technologists conduct patient interviews, compile health histories and determine risk assessments pertaining to vascular disease. The technologists choose appropriate testing modalities and provide referring physicians with preliminary interpretation of results.
Subjects to the following:

All students will be guaranteed an externship imaging faculty. The location of externship will be determined by a lottery conducted by medical institutions under the supervision of a clinical instructor. Students do not have classes on the OIT campus during this year.

The location of externship will be determined by a lottery conducted by medical imaging faculty.

All students will be guaranteed an externship subject to the following:

1. All academic requirements must be met before externship assignments will be made.
2. Students will be required to pass a drug test prior to acceptance by the externship site.
3. Students must complete a request for criminal history which is required by many of the sites for persons providing care to children or the developmentally disabled.
4. Students will be required to carry group health insurance coverage during the entire externship year.

Admission Requirements

Pre-Medical Imaging Technology Freshman Year

Enrollment is open to all students who meet the general entry requirements to the university. Students will be listed as Pre-Medical Imaging Technology (Pre-MIT) students. Admittance to the OIT Pre-MIT Program does not mean the student has been accepted into a specific MIT program.

Program Selection Criteria

Students must complete all the courses, including general education, in the specified freshman year (pre-medical imaging) curriculum. Selection will be made at the end of the spring term of the pre-medical imaging technology year. The number of students selected each year will be determined by the number of qualified applicants, and by the availability of clinical sites. Therefore, the number of qualified applicants may exceed the number of spaces available. Prior acceptance does not guarantee future acceptance into any MIT Program. Students must reapply yearly.

Selection will be based upon the following criteria and point system:
1. GPA: Students must have a total of a 2.75 weighted GPA (though a 3.0 is highly recommended), in the following courses (or equivalent transfer courses) to apply to one of the five MIT Programs.

<table>
<thead>
<tr>
<th>Course</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200 Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>BIO 231 Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 232 Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 233 Human Anatomy and Physiology III</td>
<td>4</td>
</tr>
<tr>
<td>CHE 101 Elementary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 104 Elementary Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>MATH 112 Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>MIT 103 Introduction to Medical Imaging</td>
<td>3</td>
</tr>
</tbody>
</table>

GPA points are calculated as GPA x 10. (For example, a 3.5 GPA x 10 = 35). To determine how to calculate weighted GPA, see website at www.oit.edu/mit.

2. All applicants must attend an OIT hosted selection event on a specific date during spring term. Several activities are conducted during this event to allow students to demonstrate communication skills, team skills, writing skills, problem solving skills and professionalism. Faculty from the MIT Department, industry leaders and other OIT department members are present at the selection event to evaluate those skills.

Application Requirements

Applications are available through MIT 103 Introduction to Medical Imaging.

A copy of transcripts (unofficial) must be attached to the application. Incomplete applications will not be accepted. There are no refunds of the application fee. Repeat applicants must follow the same procedures as first-time applicants. Contact the selection chairman for a new application.

The application form allows ranking of programs by choice (first and second) and only one application per student will be accepted. If multiple applications are received, they will be returned along with the application fees.

For current selection information refer to the OIT Medical Imaging Technology (MIT) Web site at www.oit.edu/mit.

Transfer Students

Transfer students who meet the academic requirements of the pre-medical imaging technology year will not find a course at another college which substitutes for MIT 103 Introduction to Medical Imaging. This course may be taken as a distance learning course. It must be completed in the summer, fall, winter or spring term prior to the application to a professional program. The MIT application form is included in the MIT 103 course. Transfer students must apply to both OIT and MIT using two separate application processes. For more information on this distance course, contact Diana Evans at (541) 885-1676.

Graduation Requirements

All credits listed in the curriculum for the catalog year a student begins a program must be fulfilled. Total credits required for graduation are: Diagnostic Medical Sonography 207, Echocardiography 198, Nuclear Medicine Technology 195, Radiologic Science 202 and Vascular Technology 199.
Students must maintain a 2.00 GPA to be eligible for graduation. In addition, a final grade of “C” or better must be earned in all professional courses (DMS, ECHO, NMT, RDSC, VT), communication courses, and science/mathematics courses to continue in the program. All curricular requirements must be met within five academic years once the student is admitted into a professional program as a sophomore.

When a student unsuccessfully attempts an imaging course, progress in the professional curriculum is curtailed until that course is successfully completed the following year, pending reinstatement. However, if the student has an unsuccessful attempt fall term, sophomore year, they must reapply to the program. If the student has an unsuccessful attempt after fall term sophomore year the student must submit a letter of intent to the program director of the specific program they seek to re-enter. The letter must be submitted at least one term prior to readmission. Readmittance may also depend upon other requirements such as auditing courses, attending labs, and/or remedial work as specified by the program director.

When students attempt unsuccessfully a second time the same or a different imaging course, they are terminated from that program. Additionally, if a student receives a “D,” “F” or “W” in two or more imaging courses in one term, they will be dismissed from that program.

Students may apply for admittance to a second imaging program under the same application criteria as all other applicants. After two unsuccessful attempts to complete two different programs, students may not apply for a third program.

Career Opportunities

There continues to be a high demand for bachelor’s degree prepared medical imaging professionals. Graduates have excellent opportunities for employment in hospitals, clinics, private practice, state and federal agencies, and with appropriate experience, in supervision, education and industry.

Bachelor of Science in Diagnostic Medical Sonography

Curriculum

Required courses and recommended terms during which they should be taken:

Pre-Medical Imaging Technology

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MIT 103</td>
<td>Introduction to Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Spring</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III</td>
<td>4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202 or PSY 203)</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Professional Courses

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 335</td>
<td>Cross-Sectional Anatomy *</td>
<td>3</td>
</tr>
<tr>
<td>DMS 223</td>
<td>Applications of Abdominal Sonography I *</td>
<td>3</td>
</tr>
<tr>
<td>DMS 252</td>
<td>Sophomore Laboratory I *</td>
<td>1</td>
</tr>
<tr>
<td>PHY 217</td>
<td>Physics of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS 224</td>
<td>Applications of Abdominal Sonography Patient Care *</td>
<td>3</td>
</tr>
<tr>
<td>DMS 235</td>
<td>Diagnostic Medical Sonography</td>
<td>3</td>
</tr>
<tr>
<td>DMS 253</td>
<td>Sophomore Laboratory II *</td>
<td>1</td>
</tr>
<tr>
<td>MIT 231</td>
<td>Sonographic Principles and Instrumentation I *</td>
<td>4</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Summer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS 430</td>
<td>Diagnostic Medical Sonography Externship *</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS 430</td>
<td>Diagnostic Medical Sonography Externship *</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS 430*</td>
<td>Diagnostic Medical Sonography Externship</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

* Core Imaging Courses
** Courses listed under Communication requirements for General Education.
Bachelor of Science in Echocardiography

Curriculum
Required Courses and recommended terms during which they should be taken:

Pre-Medical Imaging Technology

Freshman Year
- Fall
 - BIO 231 Human Anatomy and Physiology I 4
 - CHE 101 Elementary Chemistry 3
 - CHE 104 Elementary Chemistry Laboratory 1
 - MATH 111 College Algebra 4
 - MIT 103 Introduction to Medical Imaging 3
 - Total 15

- Winter
 - BIO 232 Human Anatomy and Physiology II 4
 - MATH 112 Trigonometry 4
 - WRI 121 English Composition 3
 - Humanities elective 3
 - Social Science elective 3
 - Total 17

Sophomore Year
- Fall
 - BIO 200 Medical Terminology 2
 - BIO 233 Human Anatomy and Physiology III 4
 - PSY Psychology (PSY 201, PSY 202 or PSY 203) 3
 - SPE 111 Fundamentals of Speech 3
 - WRI 122 English Composition 3
 - Total 15

- Spring
 - BUS 316 Total Quality in Health Care 3
 - CHE 360 Clinical Pharmacology for the Health Professions* 3
 - ECHO 325 Pediatric Echocardiography* 3
 - ECHO 376 Survey of Vascular Testing* 3
 - ECHO 385 Echocardiography Laboratory Management* 3
 - Total 15

- Summer
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Fall
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Spring
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Winter
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Spring
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Summer
 - Total Q

* Core Imaging Courses
** Courses listed under Communication requirement for General Education.

Bachelor of Science in Nuclear Medicine Technology

Curriculum
Required courses and recommended terms during which they should be taken:

Pre-Medical Imaging Technology

Freshman Year
- Fall
 - BIO 231 Human Anatomy and Physiology I 4
 - CHE 101 Elementary Chemistry 3
 - CHE 104 Elementary Chemistry Laboratory 1
 - MATH 111 College Algebra 4
 - MIT 103 Introduction to Medical Imaging 3
 - Total 15

- Winter
 - BIO 232 Human Anatomy and Physiology II 4
 - MATH 112 Trigonometry 4
 - WRI 121 English Composition 3
 - Humanities elective 3
 - Social Science elective 3
 - Total 17

Sophomore Year
- Fall
 - BIO 346 Pathophysiology I* 3
 - ECHO 231 Echocardiography I* 4
 - MIT 231 Sonographic Principles and Instrumentation I* 4
 - Social Science elective 3
 - Total 14

- Spring
 - BIO 347 Pathophysiology II* 3
 - ECHO 225 Cardiopulmonary Patient Management Practices* 3
 - ECHO 232 Echocardiography II* 4
 - ECHO 332 Invasive Cardiology* 3
 - MIT 232 Sonographic Principles and Instrumentation II 4
 - Total 17

- Fall
 - BIO 232 Human Anatomy and Physiology II 4
 - MATH 112 Trigonometry 4
 - WRI 121 English Composition 3
 - Humanities elective 3
 - Social Science elective 3
 - Total 17

- Winter
 - BUS 317 Health Care Management 3
 - ECHO 333 Echocardiography III* 4
 - ECHO 321 Stress and Transeophageal Echo* 3
 - SPE 321 Small Group and Team Communication 3
 - Humanities elective 3
 - Total 16

- Spring
 - BIO 200 Medical Terminology 2
 - BIO 233 Human Anatomy and Physiology III 4
 - PSY Psychology (PSY 201, PSY 202 or PSY 203) 3
 - SPE 111 Fundamentals of Speech 3
 - WRI 122 English Composition 3
 - Total 15

- Fall
 - BUS 316 Total Quality in Health Care 3
 - CHE 360 Clinical Pharmacology for the Health Professions* 3
 - ECHO 325 Pediatric Echocardiography* 3
 - ECHO 376 Survey of Vascular Testing* 3
 - ECHO 385 Echocardiography Laboratory Management* 3
 - Total 15

- Winter
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Spring
 - ECHO 420 Echocardiography Externship* 15
 - Total 15

- Summer
 - Total Q
Bachelor of Science in Radiologic Science

Curriculum

Required courses and recommended terms during which they should be taken:

Pre-Medical Imaging Technology

Freshman Year Fall
- BIO 231 Human Anatomy and Physiology I 4
- CHE 101 Elementary Chemistry 3
- CHE 104 Elementary Chemistry Laboratory 3
- MATH 111 College Algebra 4
- MIT 103 Introduction to Medical Imaging 3

Total 15

Freshman Year Winter
- BIO 232 Human Anatomy and Physiology II 4
- MATH 112 Trigonometry 4
- WRI 121 English Composition 3
- Humanities elective 3
- Social Science elective 3

Total 17

Freshman Year Spring
- BIO 200 Medical Terminology 2
- BIO 233 Human Anatomy and Physiology III 4
- PSY Psychology (PSY 201, PSY 202 or PSY 203) 3
- SPE 111 Fundamentals of Speech 3
- WRI 122 English Composition 3

Total 15

Professional Courses

Sophomore Year Fall
- RDSC 201 Imaging Techniques I * 4
- RDSC 235 Equipment Operation and Maintenance * 3
- WRI 227 Technical Report Writing 3
- Humanities elective ** 3

Total 16

Sophomore Year Winter
- RDSC 202 Imaging Techniques II * 4
- RDSC 205 Patient Care * 4
- RDSC 210 Radiographic Positioning I * 4
- RDSC 366 Radiographic Pathology * 3

Total 15

Junior Year Fall
- BIO 336 Essentials of Pathophysiology 3
- RDSC 301 Radiographic Positioning III * 4
- RDSC 320 Surgical, Trauma and Mobile Radiography * 3
- RDSC 355 Computed Tomography * 3

Total 17

Junior Year Winter
- BUS 316 Total Quality in Health Care Management 3
- RDSC 356 Magnetic Resonance * 3
- SPE 321 Small Group and Team Communication 3
- Humanities elective 3
- Social Science elective 3

Total 16

Senior Year Summer
- RDSC 410 Radiologic Science Externship* 15

Total 15

Senior Year Fall
- RDSC 410 Radiologic Science Externship* 15

Total 15

Senior Year Winter
- RDSC 410 Radiologic Science Externship* 15

Total 15

* Core Imaging Courses
** Courses listed under Communication requirement for General Education.

Bachelor of Science in Vascular Technology

Curriculum

Required courses and recommended terms during which they should be taken:

Pre-Medical Imaging Technology

Freshman Year Fall
- BIO 231 Human Anatomy and Physiology I 4
- CHE 101 Elementary Chemistry 3
- CHE 104 Elementary Chemistry Laboratory 3
- MATH 111 College Algebra 4
- MIT 103 Introduction to Medical Imaging 3

Total 15

Freshman Year Winter
- BIO 232 Human Anatomy and Physiology II 4
- MATH 112 Trigonometry 4
- WRI 121 English Composition 3
- Humanities elective 3
- Social Science elective 3

Total 17

Freshman Year Spring
- BIO 233 Human Anatomy and Physiology III 4
- PSY Psychology (PSY 201, PSY 202 or PSY 203) 3
- SPE 111 Fundamentals of Speech 3
- WRI 122 English Composition 3

Total 15

Professional Courses

Sophomore Year Fall
- BUS 220 Cardiovascular Physiology* 4
- PHY 217 Physics of Medical Imaging* 3
- VAS 214 Vascular Anatomy* 4
- WRI 227 Technical Report Writing 3

Total 14

Sophomore Year Winter
- BIO 346 Pathophysiology I * 3
- MIT 231 Sonographic Principles and Instrumentation II* 4
- VAS 246 Peripheral Arterial Disease* 4
- VAS 335 Radiographic Vascular Anatomy* 3

Total 14

Sophomore Year Spring
- BIO 347 Pathophysiology II* 3
- MIT 232 Sonographic Principles and Instrumentation II* 4
- VAS 225 Patient Management Practices* 3
- VAS 245 Peripheral Venous Disease* 4
- Social Science elective 3

Total 17

Junior Year Fall
- BUS 317 Health Care Management 3
- SPE 321 Small Group and Team Communication 3
- VAS 337 Survey of Echocardiography* 3
- VAS 365 Abdominal Vascular Disease* 4
- Social Science elective 3

Total 16
Archiving and Communication Systems majors at OIT, a specialization in Picture Archiving and Communication Systems (PACS) Specialization

Medical Imaging Technology students with an interest and aptitude in computer science have a unique opportunity at OIT. Networked digital imaging has created the need for technologists with specialized training. Career opportunities for managers of image networks are on the rise, but few working technologists have the training to prepare them for entering this field.

With the availability of Computer Systems and Management Information Systems majors at OIT, a specialization in Picture Archiving and Communication Systems (PACS) is available for motivated students to pursue this opportunity.

Requirements of the Specialization

MIT 260 Introduction to PACS 3
MIT 333 HIPAA for PACS/HI 3
MIT 361 Advanced PACS 3
MIT 362 PACS Networking 3
MIT 363 PACS DBMS 3
MIT 374 Quality Assurance of Medical Images 3

Students must earn a “C” or better in all courses to be awarded the specialization.

Degree Completion Programs

The Echocardiography, Radiologic Science and Vascular Technology and Diagnostic Medical Sonography programs offer degree completion programs for registered technologists (in good standing) who wish to pursue a bachelor’s degree in their field. These programs are fully online. There is no requirement to come to campus.

Bachelor’s Degree Completion Diagnostic Medical Sonography

Admission Procedures

1. Complete the Online Degree Completion Program Application for Admission.
2. Mail your application, a copy of your registry certificate, a check for $100 (made out to Oregon Institute of Technology) and the signed Statement of Acknowledgement, to the Distance Education Office.
3. Mail official transcripts from all colleges you have attended to the Distance Education Office.
4. Request a letter of good standing from ARDMS be mailed to the Distance Education Office. This letter will enable the University Registrar to grant college credit based on your registry.

Courses granted for Registry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS 223</td>
<td>Applications of Abdominal Sonography I</td>
<td>3</td>
</tr>
<tr>
<td>DMS 224</td>
<td>Applications of Abdominal Sonography II</td>
<td>3</td>
</tr>
<tr>
<td>DMS 225</td>
<td>Applications of Abdominal Sonography III</td>
<td>3</td>
</tr>
<tr>
<td>DMS 234</td>
<td>Pelvic Sonography</td>
<td>3</td>
</tr>
<tr>
<td>DMS 235</td>
<td>Diagnostic Medical Sonography Patent Care</td>
<td>3</td>
</tr>
<tr>
<td>DMS 252</td>
<td>Sophomore Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>DMS 253</td>
<td>Sophomore Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>DMS 254</td>
<td>Sophomore Laboratory III</td>
<td>1</td>
</tr>
<tr>
<td>DMS 371</td>
<td>Obstetrical Sonography First Trimester</td>
<td>3</td>
</tr>
<tr>
<td>DMS 372</td>
<td>Obstetrical Sonography Second/Third Trimester</td>
<td>3</td>
</tr>
<tr>
<td>DMS 388</td>
<td>Externship Preparation (waived)</td>
<td>0</td>
</tr>
<tr>
<td>DMS 430</td>
<td>Diagnostic Medical Sonography Externship</td>
<td>45</td>
</tr>
<tr>
<td>MIT 103</td>
<td>Introduction to Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>MIT 231</td>
<td>Sonographic Principles and Instrumentation I</td>
<td>4</td>
</tr>
<tr>
<td>MIT 232</td>
<td>Sonographic Principles and Instrumentation II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 217</td>
<td>Physics of Medical Imaging</td>
<td>3</td>
</tr>
</tbody>
</table>

OIT Degree Completion Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 335</td>
<td>Cross-Sectional Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BUS 316</td>
<td>Total Quality in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>BUS 317</td>
<td>Health Care Management</td>
<td>3</td>
</tr>
<tr>
<td>DMS 315</td>
<td>Sonographic Superficial Structures</td>
<td>3</td>
</tr>
<tr>
<td>DMS 316</td>
<td>Survey of Vascular Technology *</td>
<td>3</td>
</tr>
<tr>
<td>DMS 342</td>
<td>Survey of Adult Echocardiography</td>
<td>3</td>
</tr>
<tr>
<td>DMS 343</td>
<td>Fetal Echo, Neonatal and Pediatric Sonography</td>
<td>3</td>
</tr>
<tr>
<td>DMS 352</td>
<td>Junior Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>DMS 353</td>
<td>Junior Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>DMS 354</td>
<td>Junior Laboratory III</td>
<td>1</td>
</tr>
<tr>
<td>DMS 365</td>
<td>Sonographic Pathology</td>
<td>3</td>
</tr>
<tr>
<td>DMS 373</td>
<td>Obstetrical Pathology</td>
<td>3</td>
</tr>
<tr>
<td>DMS 430</td>
<td>Diagnostic Medical Sonography Externship</td>
<td>15</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
</tr>
<tr>
<td>**</td>
<td>** Core Imaging courses</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>** Courses listed under Communication requirement for General Education.</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III</td>
<td>4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202, PSY 203)</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>**</td>
<td>** Social Science electives</td>
<td>9</td>
</tr>
<tr>
<td>**</td>
<td>** Humanities electives</td>
<td>9</td>
</tr>
<tr>
<td>**</td>
<td>** Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

* Credits may be granted for additional specialty registry exams. Please contact Program Director for more information.
Bachelor's Degree Completion
Echocardiography

Admission Procedures
1. Complete the Online Degree Completion Program Application for Admission.
2. Mail your application, a copy of your registry certificate, a check for $100 (made out to Oregon Institute of Technology) and the signed Statement of Acknowledgement to the Distance Education Office.
3. Mail official transcripts from all colleges you have attended to the Distance Education Office.
4. Request a letter of good standing from ARDMS/CCI be mailed to the Distance Education Office. This letter will enable the University Registrar to grant college credit based on your registry.

Courses granted for Registry

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 220</td>
<td>4</td>
</tr>
<tr>
<td>BIO 346</td>
<td>3</td>
</tr>
<tr>
<td>BIO 347</td>
<td>3</td>
</tr>
<tr>
<td>ECHO 225</td>
<td>3</td>
</tr>
<tr>
<td>ECHO 231</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 232</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 320</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 321</td>
<td>3</td>
</tr>
<tr>
<td>ECHO 325</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 326</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 334</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 353</td>
<td>4</td>
</tr>
<tr>
<td>ECHO 420</td>
<td>4</td>
</tr>
<tr>
<td>MIT 103</td>
<td>3</td>
</tr>
<tr>
<td>MIT 231</td>
<td>4</td>
</tr>
<tr>
<td>MIT 232</td>
<td>4</td>
</tr>
<tr>
<td>PHY 217</td>
<td>3</td>
</tr>
</tbody>
</table>

OIT Degree Completion Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 316</td>
<td>Total Quality in Health Care 3</td>
</tr>
<tr>
<td>BUS 317</td>
<td>Health Care Management 3</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions 3</td>
</tr>
<tr>
<td>ECHO 325</td>
<td>Pediatric Echocardiography * 3</td>
</tr>
<tr>
<td>ECHO 332</td>
<td>Invasive Cardiology 3</td>
</tr>
<tr>
<td>ECHO 334</td>
<td>Echocardiography IV 4</td>
</tr>
<tr>
<td>ECHO 365</td>
<td>Abdominal/Renal Testing 3</td>
</tr>
<tr>
<td>ECHO 376</td>
<td>Survey of Vascular Testing * 3</td>
</tr>
<tr>
<td>ECHO 385</td>
<td>Echocardiography Laboratory Management 3</td>
</tr>
<tr>
<td>ECHO 420A</td>
<td>Echocardiography Externship 8</td>
</tr>
<tr>
<td>ECHO 420B</td>
<td>Echocardiography Externship 7</td>
</tr>
<tr>
<td>ECHO 421</td>
<td>Echo Senior Project 4</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication 3</td>
</tr>
<tr>
<td></td>
<td>Communication elective 3</td>
</tr>
<tr>
<td></td>
<td>* Optional credits may be awarded for additional registries.</td>
</tr>
</tbody>
</table>

Transfer Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology 2</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I 4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II 4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III 4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry 3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory 1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra 4</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry 4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202 or PSY 203) 3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>Fundamentals of Speech 3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition 3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing 3</td>
</tr>
</tbody>
</table>

Bachelor's Degree Completion Radiologic Science

Admission Procedures
1. Complete the Radiologic Science Online Degree Completion Program Application for Admission and the Statement of Acknowledgement.
2. Mail your application, an unofficial copy of your AART registry card, signed Affiliation Agreement and a check for $100 (made out to Oregon Institute of Technology) to the Distance Education Office. A copy of your AART card must accompany your application for OIT to begin processing the application. This document verifies your eligibility for admission to the program.
3. Request that official transcripts from all colleges you have attended and an official copy of your AART registry documents be sent to the Distance Education Office. Official copies will enable OIT to grant college credit based on your credentials.

Courses granted for Registry

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 335</td>
<td>Cross-Sectional Anatomy 3</td>
</tr>
<tr>
<td>BIO 336</td>
<td>Essentials of Pathophysiology 3</td>
</tr>
<tr>
<td>BUS 316</td>
<td>Total Quality in Health Care 3</td>
</tr>
<tr>
<td>BUS 317</td>
<td>Health Care Management 3</td>
</tr>
<tr>
<td>RDSC 326</td>
<td>Cardiovascular/Interventional Technology * 4</td>
</tr>
<tr>
<td>RDSC 354</td>
<td>Mammography * or 4</td>
</tr>
<tr>
<td>RDSC 365</td>
<td>Advanced Quality Assurance/Quality Control 4</td>
</tr>
<tr>
<td>RDSC 355</td>
<td>Computed Tomography 4</td>
</tr>
<tr>
<td>RDSC 356</td>
<td>Magnetic Resonance 4</td>
</tr>
<tr>
<td>RDSC 366</td>
<td>Radiologic Pathology 3</td>
</tr>
<tr>
<td>RDSC 411</td>
<td>Special Radiologic Science Externship 15</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication 3</td>
</tr>
<tr>
<td></td>
<td>Communication elective 3</td>
</tr>
<tr>
<td></td>
<td>* Optional credit may be awarded for additional registries.</td>
</tr>
</tbody>
</table>

Transfer Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology 2</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I 4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II 4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III 4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry 3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory 1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra 4</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry 4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202 or PSY 203) 3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>Fundamentals of Speech 3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition 3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing 3</td>
</tr>
</tbody>
</table>
Bachelor's Degree Completion Vascular Technology

Admission Process and Requirements
1. Complete the Online Degree Completion Program Application for Admission.
2. Mail your application, a copy of your registry certificate, a check for $100 (made out to Oregon Institute of Technology) and the signed Statement of Acknowledgement to the Distance Education Office.
3. Request that official transcripts from all colleges you have attended to be sent to the Distance Education Office.
4. Request a letter of good standing from ARDMS/CCI be mailed to the Distance Education Office. This letter will enable the University Registrar to grant college credit based on your registry.

Courses granted for Registry

*Optional credit may be awarded for additional registries.

Transfer Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202)</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
</tr>
</tbody>
</table>

OIT Degree Completion Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 220</td>
<td>Cardiovascular Physiology</td>
</tr>
<tr>
<td>BUS 316</td>
<td>Total Quality in Health Care</td>
</tr>
<tr>
<td>BUS 317</td>
<td>Health Care Management</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
</tr>
<tr>
<td>VAS 335</td>
<td>Radiographic Vascular Anatomy</td>
</tr>
<tr>
<td>VAS 337</td>
<td>Survey of Echocardiography</td>
</tr>
<tr>
<td>VAS 365</td>
<td>Abdominal Vascular Disease</td>
</tr>
<tr>
<td>VAS 366</td>
<td>Special Circulatory Problems</td>
</tr>
<tr>
<td>VAS 375</td>
<td>Survey of Abdominal Sonography</td>
</tr>
<tr>
<td>VAS 385</td>
<td>Vascular Laboratory Management</td>
</tr>
<tr>
<td>VAS 420A</td>
<td>Special Vascular Technology Externship</td>
</tr>
<tr>
<td>VAS 420B</td>
<td>Special Vascular Technology Externship</td>
</tr>
<tr>
<td>WRI</td>
<td>Communication elective</td>
</tr>
</tbody>
</table>

Humanities electives: 9
Social Science electives: 9
Elective: 2
Natural Sciences Department

Ken Usher, Department Chair

Associate Professors: H.-Y. Li, T. McVay, R. Torres, K. Usher, R. Wilde

Assistant Professors: S. Anthony, M. Beekman, S. Bekker, M. Hughes, R. McClure, G. Pak, L. Parratt, C. Wittmer

Instructor: B. Kowash

Degrees Offered
Bachelor of Science in Biology
Biological Sciences Emphasis
Pre-Medical Professions Emphasis
Bachelor of Science in Environmental Sciences
Bachelor of Science in Health Sciences

Minor Offered
Biology

The Department of Natural Sciences prepares students for challenging, rewarding careers in health, biological, and environmental sciences. The department also provides courses in biology, chemistry, and physics in support of degrees in nursing, medical imaging, dental hygiene, respiratory care, management and engineering programs.

Biology Program

Burton Clark, Program Director for Biology—Pre-Medical Professions Emphasis

Degree Offered
Bachelor of Science in Biology

Minor Offered
Biology

Objective and Career Opportunities
The Bachelor of Science in Biology provides students with two alternative majors to meet your career goals. The courses of study are designed to prepare students for entry into professional and graduate careers in the health sciences, biological sciences and biology education.

A biological sciences curriculum emphasizes field and laboratory training in ecology, evolution, and the biology of organisms. It is designed for students wishing to apply to graduate programs in biology, those seeking careers in the applied biological sciences, and those wishing to pursue graduate teaching credentials with a specialty in biology.

A pre-medical professions curriculum is designed for students who want to be pre-medical, pre-dental, pre-veterinary, pre-pharmacy, pre-physical therapy, etc. The courses will prepare you for applying to professional schools in medicine, dentistry, osteopathy, veterinary medicine, physical therapy, occupational therapy, optometry, pharmacy, podiatry, clinical laboratory sciences, and other programs requiring rigorous coursework in the sciences and mathematics.

Considerable flexibility in major electives is granted toward the degree. Students, in consultation with their advisors, may select courses from either curriculum or from courses in other departments that satisfy the degree requirements.

Degree Requirements

The minimum graduation requirement for OIT is 180 credit hours (term hours). A minimum of 60 credits must be in upper-division (300- and 400-numbered) courses. These requirements include those for general education (stated elsewhere in this catalog) and the prescribed courses required for every student completing a Bachelor of Science in Biology degree. Prescribed courses differ for students in the premedical professional and the biological sciences curricula.

Biology students must complete every science course with a minimum grade of “C” and must maintain a minimum grade point average of 2.5 in lower division science courses to advance to upper-division science courses in the major.

Bachelor of Science in Biology—Biological Sciences Emphasis

Curriculum

Required courses and recommended terms during which they should be taken:

Freshman Year	Fall		Winter		Spring			
---------------	------							
BIO 211	Principles of Biology	4		BIO 212	Principles of Biology	4		
MATH 111	College Algebra	4		GEOG 105	Physical Geography: Geomorphology	3		
WRI 121	English Composition	3		WRI 122	English Composition	3		
	Social Science elective							
Total	14		Total	14		Total	14	
Freshman Year	Fall		Winter		Spring			
BIO 213	Principles of Biology	4		MATH 361	Statistical Methods I	4		
SPE 111	Fundamentals of Speech	3		WRI 227	Technical Report Writing	3		
	Social Science elective							
Total	14		Total	17		Total	15	
Sophomore Year	Fall		Winter		Spring			
BIO 345	Medical Microbiology	5		CHE 221	General Chemistry	5		
CHE 222	General Chemistry	4		MATH 251	Differential Calculus	4		
	Social Science elective							
Total	17		Total	15		Total	15	
Sophomore Year	Fall		Winter		Spring			
BIO 341	Medical Genetics	3		CHE 223	General Chemistry	5		
CHE 222	General Chemistry	4		WRI 327	Advanced Technical Writing	3		
MATH 252	Integral Calculus	4		CHE 331	Organic Chemistry I	4		
SPE 321	Small Group and Team Communication	3		PHY 221	General Physics with Calculus	4		
	Humanities elective							
Total	15		Total	15		Total	15	
Junior Year	Fall							
BIO 351	Vertebrate Biology	4		CHE 331	Organic Chemistry I	4		
CHE 331	Organic Chemistry I	4		PHY 221	General Physics with Calculus	4		
	Humanities elective							
Total	15		Total	15		Total	15	
Junior Year Winter
BIO 101 Introduction to Physical Anthropology § 3
BIO 352 Developmental Biology ‡‡ 4
CHE 332 Organic Chemistry II 4
PHY 222 General Physics with Calculus * 4
Total 15

Junior Year Spring
BIO 317 Invertebrate Biology ‡‡ 4
BIO 327 General Ecology § 4
CHE 333 Organic Chemistry III 4
PHY 223 General Physics with Calculus * 4
Total 16

Senior Year Fall
BIO 426 Evolutionary Biology 3
CHE 450 Biochemistry I 4
Elective 3
Elective 3
Elective 3
Total 16

Senior Year Winter
CHE 451 Biochemistry II 4
Elective 3
Elective 3
Elective 3
Total 16

Senior Year Spring
BIO 342 Cell Biology 4
BIO 407 Biology Seminar 2
CHE 452 Biochemistry III 4
Elective 3
Total 13

When choosing the major electives or substituting courses, students are responsible for completing a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division work is defined as 300 and 400 level classes at a bachelor's degree granting institution.

General and Major Elective Choices:
BIO 112 Introduction to Data Analysis 1
BIO 205 Nutrition 3
BIO 216 Introduction to Veterinary Medicine 4
BIO 225 Riparian Assessment Methods 1
BIO 226 Introduction to Wildlife Rehabilitation 3
BIO 227 Introduction to Forensic Science 4
BIO 231 Human Anatomy and Physiology I 4
BIO 232 Human Anatomy and Physiology II 4
BIO 233 Human Anatomy and Physiology III 4
BIO 331 Human Anatomy and Physiology I 5
BIO 332 Human Anatomy and Physiology II 5
BIO 333 Human Anatomy and Physiology III 5
BIO 337 Aquatic Ecology 4
BIO 346 Pathophysiology I 3
BIO 347 Pathophysiology II 3
BIO 357 Introduction to Neuroscience 3
BIO 428 Animal Behavior 3
BIO 434 Data Analysis Methods 4
BIO 436 Immunology 4
BIO 471 Senior Project Proposal Research 1
BIO 472 Senior Project Proposal 1
BIO 473 Senior Project Data Collection 1
BIO 474 Senior Project Data Analysis and Presentation 2
CHE 235 Streamwater Chemistry and Sampling 3
CHE 315 Environmental Chemistry and Toxicology 3
CHE 325 Soil Science 4
CHE 360 Clinical Pharmacology for the Health Professions 3
GEOG 115 Physical Geography: Climatology 4
GIS 105 Map and Compass/GIS 1
MATH 362 Statistical Methods II 4

Bachelor of Science in Biology—Pre-Medical Professions Emphasis

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year Fall
BIO 211 Principles of Biology 4
MATH 111 College Algebra 4
WRI 121 English Composition 3
Social Science elective 3
Total 14

Freshman Year Winter
BIO 109 Introduction to the Medical Sciences 2
BIO 212 Principles of Biology 4
MATH 112 Trigonometry 4
WRI 122 English Composition 3
Social Science elective 3
Total 16

Freshman Year Spring
BIO 213 Principles of Biology 4
MATH 361 Statistical Methods I 4
MATH 364 Statistical Methods II 4
Health Biology elective (lower-division) 2
Humanities elective 3
Total 13

Sophomore Year Fall
BIO 345 Medical Microbiology 5
CHE 221 General Chemistry 5
MATH 251 Differential Calculus 4
SPE 111 Fundamentals of Speech 3
Total 17

Sophomore Year Winter
BIO 209 Current Research Topics in Medical Sciences I 1
CHE 222 General Chemistry 5
MATH 252 Integral Calculus 4
SPE 321 Small Group and Team Communication 3
Health Biology elective (upper-division) 3
Total 16

Sophomore Year Spring
CHE 233 General Chemistry 5
WRI 227 Technical Report Writing 3
Health Biology elective (upper-division) 4
Humanities elective 3
Total 16

Junior Year Fall
BIO 331 Human Anatomy and Physiology I 5
CHE 331 Organic Chemistry I 4
PHY 221 General Physics with Calculus 4
Total 13

Junior Year Winter
BIO 332 Human Anatomy and Physiology II 5
CHE 332 Organic Chemistry II 4
PHY 222 General Physics with Calculus 4
WRI 327 Advanced Technical Writing 3
Total 16

Senior Year Fall
CHE 450 Biochemistry I 4
Biochemistry I 4
Health Biology elective (upper-division) 3
Social Science elective 3
Elective 3
Elective 3
Total 16

Senior Year Winter
BIO 346 Pathophysiology I 3
BIO 409 Current Research Topics in Medical Sciences II 2
CHE 451 Biochemistry II 4
Social Science elective 3
Elective 3
Total 15

Students wishing to use Human Anatomy and Physiology should select either the 231-233 or 331-333 sequence. Note credit hour differences and consult with advisor.

Either BIO 337 or BIO 428 is required for admission to Southern Oregon University's MAT program.
Pre-Professional Program in Dentistry

Rose McClure, Advising Coordinator

The pre-professional program in dentistry prepares the student for entrance into dental school. While the requirements for admission to dental schools vary and some will accept students earlier, a bachelor's degree is highly encouraged for acceptance. In fact, 82% of first-year dental students have completed a four-year baccalaureate degree before starting dental school and 90% have four years of pre-dental college courses before acceptance. The curriculum at Oregon Institute of Technology provides the prerequisite courses for dental school including a full year of general biology, general chemistry, organic chemistry, biochemistry, anatomy & physiology, and physics. All of these have year-long labs. In addition, health-specific courses in cell biology, medical genetics, medical microbiology, nutrition, pathophysiology, and immunology are taken along with calculus, humanities, psychology, and English composition courses.

Because the pre-dental requirements for each dental school vary slightly, it is suggested by sophomore year of college that students look at the requirements for several dental schools along with their dream school. It is also recommended that students do not use AP credit to fill prerequisites for dental school since most do not accept them. There are eight advisors in the pre-med program and students are encouraged to work closely with the advisor they connect best with. Advisors guide students on courses selection, job or volunteer experience, and lead them through the medical school application process. Admission into medical school requires a four-year bachelor's degree with a preference for a science major over a non-science major. Once accepted, medical school then requires approximately four years of education and three to six years of internship and residency. More than 17,000 students enter medical school each year with half of the class being women.

Students are urged to volunteer in medical settings, possibly during high school and especially during college. For students currently in high school, it is advised that the student enrolls in many sciences courses before college to help them prepare for future success. It is recommended that students do not use AP credit to fill medical school prerequisites since they often do not accept them. Nonetheless, it is encouraged to take AP courses in high school since the rigor is excellent college preparation.

Students considering a career in medicine should explore the websites of the schools they have interest in as the prerequisites for each may vary. Students are suggested...
to read the Medical School Admissions Requirements (MSAR) published by the Association of American Medical Colleges. The pre-med program at OIT includes a full year of general biology, general chemistry, organic chemistry, biochemistry, anatomy & physiology, and physics. All of these have year-long labs. In addition, health-specific courses in cell biology, medical genetics, medical microbiology, nutrition, pathophysiology, and immunology are taken along with calculus, humanities, psychology, and English composition courses. While the curriculum is very challenging, admission into medical school is highly competitive and requires strong academic achievement. The coursework at OIT helps students prepare for the medical college admission test (MCAT) required by nearly all medical schools. The test, which is divided into four sections includes physical sciences, biological sciences, verbal reasoning, and writing sample, is used to predict a student’s ability to succeed academically.

Completion of this program will lead to a degree in Biology. For complete program requirements and a list of appropriate courses please see the Bachelor of Science in Biology-Pre-Medical Professions Emphasis

Pre-Professional Program in Pharmacy

Rose McClure,
Advising Coordinator

A pharmacy degree normally takes four years to complete. Most first-year pharmacy students have completed four years of undergraduate education and possess a bachelor's degree in the sciences. One also must complete the prerequisites for the pharmacy school. The curriculum at Oregon Institute of Technology provides the prerequisite courses including a full year of general biology, general chemistry, organic chemistry, biochemistry, anatomy & physiology, and physics. All of these have year-long labs. Additional courses in cell biology, medical genetics, medical microbiology, nutrition, pathophysiology, and immunology are taken along with calculus, humanities, psychology, statistics and English composition courses. The pre-professional program in pharmacy at OIT has eight advisors and students are encouraged to work closely with the advisor they connect best with. Students are urged to begin volunteering in pharmacy settings, possibly during high school and especially during college. For students currently in high school, it is recommended to shadow and talk with pharmacists and to take many science courses before college to help prepare for future success.

The application process to pharmacy school is done through the Pharmacy College Application Service (PharmCAS). Students are encouraged to look at their web site while also looking at the sites of schools they have an interest in. Some pharmacy schools require the Pharmacy College Admissions Test (PCAT). Oregon State University and the pharmacy schools in California do not. Admission to school is competitive so a strong undergraduate GPA, community service, and communications and leadership skills will help.

Completion of this program will lead to a degree in Biology. For complete program requirements and a list of appropriate courses please see the Bachelor of Science in Biology-Pre-Medical Professions Emphasis.

Pre-Professional Program in Veterinary Medicine

Rose McClure,
Advising Coordinator

The pre-professional program in veterinary medicine prepares students for entrance into veterinary school. There are twenty-eight veterinary schools in the United States and it is highly recommended that students visit the websites of the schools they are interested in. The prerequisites for each school vary slightly. There are eight advisors in the program and students should work closely with the advisor they connect best with.

Admission to veterinary school is competitive and requires a good undergraduate GPA in addition to shadowing or working with a veterinarian. Students are encouraged to work in a clinical practice, volunteer in an animal shelter, or work at a zoo or rehabilitation facility while completing their undergraduate courses. Students currently in high school should continue to take science courses and, if available, be involved in 4H or FFA. Advisors recommend that students do not use AP credit to fill prerequisites for veterinary school since most do not accept them.

Being a resident of a state that has a veterinary school is also a major advantage to being accepted since most schools take few out-of-state applicants. If the student’s home state does not have a veterinary school, hopefully the state “buys” seats from a veterinary school in a neighboring state for its residents. The WICHE program in the western United States allows out-of-state students to attend the University of Colorado, Oregon State University, Washington State University and University of California at Davis veterinary schools for in-state tuition.

Many veterinary schools require students to take the general test of the Graduate Record Examination (GRE). It is offered monthly and is often taken in the junior year of undergrad. The majority of first-year veterinary student have completed their bachelor’s degree at a four-year university.

The program at Oregon Institute of Technology offers the prerequisite courses (and more) for veterinary school including a full year of general biology, general chemistry, organic chemistry, biochemistry, anatomy & physiology, and physics. All of these have year-long labs. In addition, health-specific courses in animal behavior, wildlife rehabilitation, cell biology, medical genetics, medical microbiology, nutrition, pathophysiology, and immunology are taken along with calculus, humanities, psychology, English composition and public speaking courses. Business-related courses are also recommended.

Completion of this program will lead to a degree in Biology. For complete program requirements and a list of appropriate courses please see the Bachelor of Science in Biology-Pre-Medical Professions Emphasis.
Biology Minor

The biology minor is open to all majors and is especially recommended for students who want to further their knowledge in biology as it relates to their chosen field. The minor offers specialized courses in biology and will document student proficiency in specific areas of biology. A minimum of 24 credits is required to complete the minor. Any substitution for elective courses must be approved by an advisor in the Natural Sciences Department. Students are advised to pay strict attention to prerequisites when selecting courses for the biology minor.

Requirements of Minor

Required core courses:
- BIO 211 Principles of Biology
- BIO 212 Principles of Biology
- BIO 213 Principles of Biology

And a minimum of 12 credits upper-division course work from the following list:
- BIO 331 Human Anatomy and Physiology I
- BIO 332 Human Anatomy and Physiology II
- BIO 333 Human Anatomy and Physiology III
- BIO 337 Aquatic Ecology
- BIO 341 Medical Genetics
- BIO 345 Medical Microbiology
- BIO 351 Vertebrate Biology
- BIO 426 Evolutionary Biology
- BIO 436 Medical Genetics

* Courses offered in alternating years.

Environmental Sciences Program

Carrie Wittmer, Program Director

Participating Faculty: M. Hughes, L. Parratt, L. Powers, J. Ritter, E. Schechtel, L. Svanevik, D. Thaemert, C. Wittmer

Degree Offered
Bachelor of Science in Environmental Sciences

The Bachelor of Science degree in Environmental Sciences is a degree in science methodology and applied analysis, focusing on applying state-of-the-art field methods, instrumentation, data analysis and the study of environmental problems. Three technical emphasis areas are available: Watershed Science, Sustainable Technologies and Geographic Information Systems (GIS). The program builds on three cores: an environmental core of six lower-division courses, a basic sciences core consisting of nine courses (one year each of biology, chemistry and physics), and a mathematics core of five courses, including differential and integral calculus and statistics. The program is interdisciplinary in nature and utilizes practical skills and knowledge of faculty from a broad range of backgrounds and experience.

Students may choose to concentrate in one of the technical emphasis areas or, under the direction of an advisor, students may blend offerings from three areas to create a more individually focused curriculum. Courses from other departments including Civil Engineering, Renewable Energy Engineering and Manufacturing and Mechanical Engineering, Mathematics, Chemistry, Health Sciences, Computers, or Communication Studies may be substituted for technical emphasis courses upon approval of your advisor.

Objectives

The objectives of the Environmental Sciences Program are:
1. To provide students with knowledge and training in the practical application of the scientific method utilizing analytical approaches and instrumentation-based methodologies.
2. To prepare students for roles that require critical-thinking and problem-solving skills.
3. To present complex environmental problems from a systems perspective that features diverse data acquisition and manipulation techniques.
4. To allow students to develop team-based problem solving skills by encouraging collaboration, utilizing diverse approaches, and utilizing projects and task-based exercises and assignments.

Student Preparation

The Environmental Sciences curriculum is a demanding instructional program requiring the development and use of quantitative skills. Prospective students for this program are advised to complete two to three years of high school mathematics and science (biology, chemistry, and physics). Students should also be familiar with computer applications. Students transferring from other science or technical programs, including environmental programs at other institutions, are requested to contact the program director for information on program requirements.

Career Opportunities

The Environmental Sciences Program produces graduates who are highly skilled in the methodology and practice of environmental assessment. Students learn to design, implement and interpret the results of scientific studies used to address specific environmental issues and problems. Graduates can expect to find employment in consulting firms, government agencies (regulatory and research), educational institutions and many types of service and industrial firms. Students are also prepared to enter many graduate school programs.

Environmental Science students have been actively recruited by major employers including: U.S. Bureau of Reclamation, Bureau of Land Management, U.S. Fish and Wildlife Service, Oregon State Police Wildlife Enforcement, Klamath County Health Department, Klamath Irrigation District, U.S. Geological Survey, the Nature Conservancy, Klamath County Soil and Water Conservation District and JELD-WEN.

Many Environmental Sciences majors find part time or summer employment directly related to their studies.

Degree Requirements

Students must meet the general education requirements, as stated elsewhere in this catalog, and satisfactorily complete the courses listed in the curriculum to obtain a Bachelor of Science in Environmental Sciences. A total of 183 credits are required for the degree. Students are encouraged to develop an area of technical expertise based on their own
interests. The sophomore project provides an opportunity for independent investigation early in the student's academic career. Students prepare the groundwork for their senior project at the end of the junior year in BIO 473 - Senior Project Data Collection. The project culminates in BIO 474 Senior Project Data Analysis and Presentation - in fall of senior year.

Students are required to pass each science course with a grade of “C” or better. This requirement is based on the quantitative skills needed in later courses as well as the degree of integration in subject material that is present throughout the program.

The Environmental Sciences Curriculum

The Environmental Sciences curriculum integrates “hands-on” skills and knowledge. Field or laboratory work are important components of many ES courses. Several freshman and sophomore courses allow a student to develop skills in computer applications, Geographic Information Systems (GIS), Global Positioning Systems (GPS), simulation modeling, streamwater chemistry and riparian assessment methods.

Bachelor of Science in Environmental Sciences

Curriculum

Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 111</td>
<td>Introduction to Environmental Sciences</td>
<td>4</td>
</tr>
<tr>
<td>BIO 211</td>
<td>Principles of Biology</td>
<td>4</td>
</tr>
<tr>
<td>GIS 103</td>
<td>Introduction to GIS</td>
<td>1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 112</td>
<td>Introduction to Data Analysis or MIS 102</td>
</tr>
<tr>
<td>BIO 212</td>
<td>Principles of Biology</td>
</tr>
<tr>
<td>GEOG 105</td>
<td>Physical Geography: Geomorphology</td>
</tr>
<tr>
<td>or GEOG 115</td>
<td>Physical Geography: Climatology</td>
</tr>
<tr>
<td>GIS 105</td>
<td>Map and Compass/GPS</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Trigonometry</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16/17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 225</td>
<td>Riparian Assessment Methods</td>
<td>1</td>
</tr>
<tr>
<td>CHE 221</td>
<td>General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MIS 275</td>
<td>Introduction to Relational Databases</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 262</td>
<td>Sophomore Project</td>
</tr>
<tr>
<td>CHE 222</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CHE 235</td>
<td>Streamwater Chemistry and Sampling</td>
</tr>
<tr>
<td>Writing elective</td>
<td>***</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 471</td>
<td>Senior Project Proposal Research</td>
</tr>
<tr>
<td>CHE 331</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>MATH 361</td>
<td>Statistical Methods I</td>
</tr>
<tr>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 434</td>
<td>Data Analysis Methods</td>
</tr>
<tr>
<td>or MATH 362</td>
<td>Statistical Methods II</td>
</tr>
<tr>
<td>BIO 472</td>
<td>Senior Project Proposal</td>
</tr>
<tr>
<td>ENV 314</td>
<td>Environmental Regulation</td>
</tr>
<tr>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>Technical Emphasis elective</td>
<td>*</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 327</td>
<td>General Ecology</td>
</tr>
<tr>
<td>BIO 473</td>
<td>Senior Project Data Collection</td>
</tr>
<tr>
<td>PHY 223</td>
<td>General Physics with Calculus</td>
</tr>
<tr>
<td>Technical Emphasis elective</td>
<td>*</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 474</td>
<td>Senior Project Data Analysis and Presentation</td>
</tr>
<tr>
<td>BIO 484</td>
<td>Sustainable Human Ecology</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Emphasis elective</td>
<td>*</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Emphasis elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

* May be 3 or 4 credits; a total of 31 credits of "technical emphasis" courses are required. At least one technical emphasis elective must be an upper-division chemistry course.

** Algebra-based PHY 201, PHY 202 and PHY 203 or calculus-based PHY 221, PHY 222 and PHY 223 are acceptable.

*** Must take WRI 327, WRI 328, WRI 350 or WRI 410.

**** PHIL 331 or PHIL 342 recommended.

Sustainable Technologies Emphasis students substitute REE 201 Introduction to Renewable Energy.

Sustainable Technologies Emphasis students substitute MET 160 Materials I.

Select 31 credits from one of the following areas of emphasis:

Watershed Science Emphasis:

- BIO 313 Botany | 4
- BIO 337 Aquatic Ecology | 4
- CHE 315 Environmental Chemistry and Toxicology | 3
- CHE 325 Soil Science | 4
- CHE 332 Organic Chemistry II | 4
- CHE 333 Organic Chemistry III | 4
- CHE 341 Instrumental Methods/Data Acquisition I | 4
- CHE 342 Instrumental Methods/Data Acquisition II | 4
- CHE 455 Water Quality Technology | 3
- CHE 465 Fate and Transport of Pollutants | 4
- CIV 362 Hydrology and Surface Water Management | 4
- CIV 466 Solid and Hazardous Waste Management | 3

Environmental Science Emphasis:

- CIV 467 Groundwater | 3
- ENV 325 Environmental Microbiology | 4
- ENV 336 Environmental Hydrology | 4
- ENV 466 Integrated Watershed Analysis | 4
- ENV 469 Treatment Wetlands | 3
- Env electives | 3
- GME 161 Plane Surveying I | 4

Environmental Chemistry Emphasis:

- CHE 325 Soil Science | 4
- CHE 332 Organic Chemistry II | 4
- CHE 333 Organic Chemistry III | 4
- CHE 341 Instrumental Methods/Data Acquisition I | 4
- CHE 342 Instrumental Methods/Data Acquisition II | 4
- CHE 455 Water Quality Technology | 3
- CHE 465 Fate and Transport of Pollutants | 4
- CIV 362 Hydrology and Surface Water Management | 4
- CIV 466 Solid and Hazardous Waste Management | 3

Humanities elective | 3

"Technical Emphasis" courses are required. At least one technical emphasis elective must be an upper-division chemistry course.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS 306</td>
<td>Geospatial Raster Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GIS 316</td>
<td>Geospatial Vector Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>GIS 332</td>
<td>Customizing the GIS Environment I</td>
<td>4</td>
</tr>
<tr>
<td>GIS 426</td>
<td>Geospatial Vector Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>GIS 432</td>
<td>Customizing the GIS Environment II</td>
<td>4</td>
</tr>
<tr>
<td>GIS 446</td>
<td>GIS Database Development</td>
<td>4</td>
</tr>
<tr>
<td>GIS 456</td>
<td>GIS Management</td>
<td>3</td>
</tr>
<tr>
<td>MIS 115</td>
<td>Visual BASIC Programming</td>
<td>4</td>
</tr>
</tbody>
</table>

GIS Emphasis:

- ENV elective * varies
- ENV elective * varies

Sustainable Technologies Emphasis:

- ANTH 335 The Built Environment 3
- BUS 304 Engineering Management 3
- BUS 416 Environmental Management 3
- CHE 260 Electrochemistry for Renewable Energy Applications 4
- CIV 315 Principles of Environmental Engineering 4
- CIV 466 Solid and Hazardous Waste Management 3
- CIV 467 Groundwater 3
- MET 160 Materials I 3
- MET 360 Materials II 3
- REE 201 Introduction to Renewable Energy 3
- REE 331 Fuel Cells 3
- REE 344 Nuclear Energy 3
- REE 346 Biofuels and Biomass 3

* BIO 265, BIO 365, ENV 435, advisor approved independent study, or an upper-division elective from another department with advisor approval.
Health Sciences Program
(See also Pre-Medical Professions Major in the Biology Program)

Burton Clark, Program Director

Degree Offered
Bachelor of Science in Health Sciences

Objective and Career Opportunities
If you are interested in pre-medical, pre-dental, pre-veterinary, pre-pharmacy, pre-physical therapy, etc., then this is the major you want. The degree program provides an intensive course of study in the basic sciences, social sciences, communication, and mathematics to prepare students for entry into professional programs. The program will meet prerequisite requirements for schools of medicine, dentistry, veterinary medicine, osteopathic medicine, optometry, pharmacy, and podiatry and for graduate programs in physical therapy and occupational therapy. Courses in health management, microbiology, and molecular biology also provide strong preparation for graduate work in biotechnology, education, public health, and medical administration.

Student Preparation
The health sciences curriculum is a demanding instructional program requiring considerable effort in science and mathematics coursework. Prospective students are advised to complete two to three years of high school mathematics and a minimum of three years of high school science (biology, chemistry, and physics).

Degree Requirements
The minimum graduation requirement is 181 credit hours of prescribed coursework. Students must meet the general education requirements, as stated elsewhere in this catalog, and satisfactorily complete the courses listed in this curriculum to obtain a Bachelor of Science degree in Health Sciences. Health Sciences students must complete every science course with a minimum grade of "C" and must maintain a minimum grade point average of 2.5 in lower division science courses to advance to upper-division science courses in the major.

Because the prerequisite requirements and recommended courses for entry into different health professions and graduate schools differ, some upper-division courses may be substituted for others, with approval of your academic advisor. The prescribed courses of the Health Sciences Program are very similar to the pre-medical professions major in the Biology Program. Students may choose either a biology degree or health sciences degree.

Bachelor of Science in Health Sciences

Curriculum
Required courses and recommended terms during which they should be taken:

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 211</td>
<td>Principles of Biology</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
</tr>
<tr>
<td>MATH 361</td>
</tr>
<tr>
<td>Health Biology elective (lower-division)</td>
</tr>
<tr>
<td>Humanities elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 345</td>
</tr>
<tr>
<td>CHE 221</td>
</tr>
<tr>
<td>MATH 251</td>
</tr>
<tr>
<td>SPE 111</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 209</td>
</tr>
<tr>
<td>CHE 222</td>
</tr>
<tr>
<td>MATH 252</td>
</tr>
<tr>
<td>WRI 227</td>
</tr>
<tr>
<td>Health Biology elective (upper-division)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 223</td>
</tr>
<tr>
<td>Health Biology elective (upper-division)</td>
</tr>
<tr>
<td>Health Biology elective (upper-division)</td>
</tr>
<tr>
<td>Humanities elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BIO 331</td>
</tr>
<tr>
<td>CHE 331</td>
</tr>
<tr>
<td>PHY 201</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 332</td>
</tr>
<tr>
<td>CHE 332</td>
</tr>
<tr>
<td>PHY 202</td>
</tr>
<tr>
<td>Humanities elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 333</td>
</tr>
<tr>
<td>CHE 333</td>
</tr>
<tr>
<td>PHY 203</td>
</tr>
<tr>
<td>WRI 327</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CHE 450</td>
</tr>
<tr>
<td>Social Science elective</td>
</tr>
<tr>
<td>Elective 5</td>
</tr>
<tr>
<td>Elective 5</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 346</td>
</tr>
<tr>
<td>BIO 409</td>
</tr>
<tr>
<td>CHE 451</td>
</tr>
<tr>
<td>SPE 321</td>
</tr>
<tr>
<td>Social Science elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Biology elective (upper-division)</td>
</tr>
<tr>
<td>Health Biology elective (upper-division)</td>
</tr>
<tr>
<td>Elective 5</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Health Biology electives (lower-division):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>BIO 205</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>BIO 216</td>
<td>Introduction to Veterinary Medicine</td>
<td>4</td>
</tr>
<tr>
<td>BIO 226</td>
<td>Introduction to Wildlife Rehabilitation</td>
<td>3</td>
</tr>
<tr>
<td>BIO 227</td>
<td>Introduction to Forensic Science</td>
<td>4</td>
</tr>
</tbody>
</table>

Health Biology electives (upper-division):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 341</td>
<td>Medical Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIO 342</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 347</td>
<td>Pathophysiology II</td>
<td>3</td>
</tr>
<tr>
<td>BIO 352</td>
<td>Developmental Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 357</td>
<td>Introduction to Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>BIO 426</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO 436</td>
<td>Immunology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 462</td>
<td>Human Cadaver Dissection</td>
<td>1</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>CHE 452</td>
<td>Biochemistry III</td>
<td>4</td>
</tr>
</tbody>
</table>

1. PHY 201, PHY 202, PHY 203 may be substituted with advisor consent.
2. MATH 243 may be substituted with advisor consent.
3. Minimum of 2 credits of lower-division health biology elective must be completed, chosen from the lower-division list above. Alternatively, an additional elective from the upper-division list may be taken, in which case a total of at least 23 credits of upper-division health biology electives are required.
4. Minimum of 21 credits of upper-division health biology electives must be completed, chosen from the upper-division list above.
5. Advisor approval of all elective choices is required. Additional courses from the health biology lists above, and/or suitable courses from BUS, MATH or PHY are recommended.

When choosing electives or substituting courses, students are responsible for completing a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division work is defined as 300 and 400 level classes at a bachelor's degree granting institution.
Nursing—
Oregon Statewide
Integrated Nursing Program

Michael R. Bleich, R.N., Ph.D., F.A.A.N.,
Dean

Terry Ross, R.N., M.S., W.O.C.N.,
Administrative Director

Associate Professor: T. Ross

Instructors: M. Boham, S. Brandsness,
M. Gran-Moravec, H. Janasek, C. Phelps,
T. Rose, D. Steers, W. Zolczynski

This program is offered at Oregon Institute of Technology by the Oregon Health &
Science University School of Nursing, in cooperation with OIT.

Degrees Offered
Bachelor of Science with a major in
Nursing

The OHSU School of Nursing is a health
professions leader in academic productivity
and innovative educational programming.
It is recognized as a model in educating
students for careers in nursing at both the
graduate and undergraduate levels. In July
1993, the Nursing Program at OIT became a
member of the Statewide Integrated Nursing
Education System for Oregon. Campuses
are located in: Ashland, at Southern Oregon
University; Klamath Falls, at Oregon Insti-
tute of Technology; La Grande, at Eastern
Oregon University; Monmouth, at Western
Oregon University; and Portland, at Oregon
Health & Science University. In addition to
a basic baccalaureate degree in nursing, the
statewide program offers opportunities for
RNs seeking B.S. degrees.

Non-nursing coursework may be taken at
Oregon Institute of Technology, a commu-

nity college, or other accredited institu-
tions of higher learning. Pre-nursing majors
must apply and be accepted by the OHSU
School of Nursing in order to progress into
the nursing major. Admission is dependent
on a point system which includes academic
performance and a proctored essay.

The baccalaureate in Nursing Program
provides the essential foundation for profes-
sional nursing licensure and practice. The
Nursing Program, as of fall 2006, includes
one year (if courses are begun in summer
term, or having transfer credits) or two
years of pre-nursing courses and then, after
acceptance into the program, three years
of professional nursing courses and general
courses, as well. Selection into the profes-
sional program is competitive.

Nursing courses build upon and comple-
ment the liberal arts and science founda-
tion required for professional practice. The
graduate of the B.S. program is eligible to
complete the registered nursing licensure
examination and is prepared to assume
responsibility for providing professional
nursing care.

Options for Registered Nurses to
Obtain a B.S.

There is a process in place for assisting RNs
to complete coursework to obtain a B.S. This
is an online degree and is not offered on the
OIT campus. Please contact the School of
Nursing for information at (866) 223-1811.

Approval and Accreditation

The Nursing Program is approved by the
Oregon State Board of Nursing (OSBN) and
accredited by the Commission on Collegiate
Nursing Education (CCNE) through 2013.

Admission

To be considered for admission to the School
of Nursing, a student must submit an online
application and official transcripts (www.
ohsu.edu/son).

The application process begins October 1
through February 15. The minimum criteria
to apply are:

• have 30 credits completed by the end
 of fall term;
• have completed the Human Anatomy
 and Physiology I;
• be at the Intermediate Algebra math
 level;
• have a minimum 3.0 GPA for your
 prerequisite courses.

Transfer Credits

Transfer credits are accepted subject to
review by OHSU Registrar’s office for com-
parability and number of credits which may
be granted.

Requirements for Major

Students with a baccalaureate degree in an-
other discipline should see a nursing advisor
for requirements with the nursing major.

Bachelor of Science with a
Major in Nursing

Curriculum

Courses and terms during which they may
be taken.

Pre-Nursing

Freshman Year

Summer

SPE 111 Fundamentals of Speech * 3
WRI 121 English Composition 3
Humanities elective 3
Social Science elective 3
Elective 3
Total 16

Fall

BIO 231 Human Anatomy and Physiology I 4
CHE 101 Elementary Chemistry * 3
CHE 104 Elementary Chemistry Laboratory • 1
MATH 100 Intermediate Algebra * 3
or
MATH 243 Introductory Statistics ** 4
PSY 201 Psychology 3
Total 16

Winter

BIO 232 Human Anatomy and Physiology II 4
CHE 102 Elementary Chemistry • 3
CHE 105 Elementary Chemistry Laboratory • 1
PSY 311 Human Growth and Development I 3
WRI 122 English Composition 3
Total 14

Spring

BIO 205 Nutrition • 3
BIO 203 Human Anatomy and Physiology III 4
CHE 103 Elementary Chemistry • 3
CHE 106 Elementary Chemistry Laboratory • 1
PSY 312 Human Growth and Development II 3
Total 14

* The math competency may be demonstrated by
a math placement test or by successful comple-
tion of MATH 95/100 Intermediate Algebra or
higher.

** Introductory Statistics is a nursing degree
requirement.

• Chemistry/Lab is not a nursing prerequisite but
it is a prerequisite to the nutrition course here
on the OIT campus. It is highly recommended.
SPE 111 is a prerequisite to the third writing (WRI 123 or WRI 227) course which is a degree requirement.

<table>
<thead>
<tr>
<th>Professional Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>NRS 210A Foundations of Nursing</td>
</tr>
<tr>
<td>Health Promotion</td>
</tr>
<tr>
<td>NRS 210B Foundations: Practicum</td>
</tr>
<tr>
<td>WRI 123 English Composition or</td>
</tr>
<tr>
<td>WRI 227 Technical Report Writing</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Winter</td>
</tr>
<tr>
<td>BIO 105 Microbiology</td>
</tr>
<tr>
<td>NRS 211 Foundations of Nursing in</td>
</tr>
<tr>
<td>Chronic Illness I</td>
</tr>
<tr>
<td>NRS 230 Clinical Pharmacology I</td>
</tr>
<tr>
<td>NRS 232 Pathophysiological Processes I</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>NRS 212 Foundations of Nursing in</td>
</tr>
<tr>
<td>Acute Care I</td>
</tr>
<tr>
<td>NRS 231 Clinical Pharmacology II</td>
</tr>
<tr>
<td>NRS 233 Pathophysiological Processes II</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

| **Junior Year** |
| **Fall** |
MATH 243 Introductory Statistics*	4
NRS 321 Nursing in Chronic Illness II and End-of-Life	9
Total	13
Senior Year	
Winter	
MATH 243 Introductions	
NRS 321 Nursing in Chronic Illness II and End-of-Life	9
Total	13

* MATH 243 may be taken any term.

| **Junior Year** |
| **Spring** |
NRS 410 Population-Based Care	9
NRS 411 Epidemiology	3
Total	12
Senior Year	
Fall	
NRS 412 Leadership and Outcomes	
Management in Nursing	10
Elective	
Total	10+
Winter	
NRS 424 Integrative Practicum I	9
NRS 424 A-J	1
Elective	
Total	10+
Spring	
NRS 425 Integrative Practicum II	9
NRS 426 A-J	1
Elective	
Total	10+

* MATH 243 may be taken any term.
Selected Courses in Physical Education and Health Education

Physical Education Philosophy and Courses
At Oregon Institute of Technology, the physical education philosophy is that every man and woman can achieve and maintain fitness through a sound program based on varied developmental, sport, and recreational activities. The physical education courses provide basic instruction in vigorous activities.

Course offerings include aquatics, fitness center activities, lifeguard training, archery, ice skating, golf, rugby, water safety instruction, basketball, varsity sports, major sports seminars in varsity sports offered at OIT, and officiating techniques.

Health Education Philosophy and Courses
Selected courses in health education are provided to assist students to prevent physical and mental health disorders and to promote well-being.

Course Policy
Physical education and health education courses are offered as elective credits only. Some courses may require an additional course fee depending on facility and special equipment needs. There is no limit on the number of times a physical education course can be repeated.
Polysonmographic Technology

Jane E. Perri, Program Director

Degree Offered
Associate of Applied Science in Polysonmographic Technology

Certificate Offered
Polysonmographic Technology

Certificate in Polysonmographic Technology
Students must successfully complete the core courses required to sit for a national exam. Computer and Internet access is required. Successful completion of the certificate curriculum leads to eligibility to sit for the national Registered Polysonmographic Technologists examination (RPSGT).

Associate of Applied Science in Polysonmographic Technology
Associate of Applied Science in Polysonmographic Technology. Students must successfully complete the courses in the certificate program for Polysonmographic Technology and other primarily general education courses. The degree completion courses can be taken from OIT or transferred from another college. Successful completion of the two-year curriculum leads to eligibility to sit for the national Registered Polysonmographic Technologists examination (RPSGT). Computer and Internet access is required.

Students who have completed the RPSGT exam may pursue a Bachelor of Science in Allied Health Management, Emphasis in Polysonmography. Students complete health management classes offered through the OIT Management Department either in the classroom or via the distance education program while working in their hometown. See the Management Department section of this catalog for more information regarding this degree.

Accreditation
The Polysonmographic Technology Program is fully accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP). The curriculum follows the guidelines suggested by the Association of Polysonmographic Technologists. Inquiries regarding accreditation should be directed to the Board of Registered Polysonmographic Technologists, 8201 Greensboro Drive, Suite 300, MacLean, VA 22102, (703) 610-9020. CAAHEP is a specialized accrediting body recognized by the Council for Higher Education Accreditation and/or the Secretary of the U.S., Department of Education.

Career Opportunities
Registered polysonmographic technologists, under medical direction, conduct diagnostic testing and evaluation of sleep disorder patients. Their duties involve the use of highly advanced technology and compassionate patient care. Graduates are employed by hospitals, out-patient testing facilities, and bio-medical equipment manufacturers. Currently there is a severe nationwide shortage of registered polysonmographic technologists.

Licensure
Students are eligible to sit for the national exam administered by the Board of Registered Polysonmographic Technologists following the completion of the core courses in the certificate program.

Student Preparation
A science background is beneficial to those entering any health sciences profession. It is recommended that the student considering a career in polysonmography take a college bound course of study in high school that includes algebra, chemistry, and biology or human anatomy and physiology. It is recommended that students take courses in Microsoft Word, Excel and PowerPoint in high school. Students are required to provide proof of completion either Cardio Pulmonary Resuscitation (CPR) or Basic Cardiac Life Support (BCLS) prior to admission.

Computer Proficiency Requirement
Demonstrated computer proficiency is required by the Board of Registered Polysonmographic Technologists to be eligible to sit for the national exam. The PSG Program is a distance education program requiring basic computer proficiency to be successful. Successful completion of the program therefore, indicates basic computer proficiency.

Degree Completion Program
The associate degree program offers a degree completion program for registered polysonmographic technologists who lack a degree. The courses for this program can be taken through the Distance Education Department or in the classroom. Not all of the required courses are available online and must be taken either in the OIT classroom or a local college and transferred. The writing courses are offered through the distance education program of other colleges in the Oregon University System.

Upon receipt of the necessary documentation, specific college credits will be awarded to qualified applicants for having passed the Registered Polysonmographic Technologists examination.

Admissions Procedures and Requirements
All applicants must meet the general admissions requirements to enroll in the Polysonmographic Technology Program. To be eligible for admission into the Polysonmographic Technology Program, applicants must meet the following criteria:

1. All applicants are required to submit an official Application for Admission to the Distance Education Department, accompanied by a $100 non-refundable fee and official transcripts of each college or university attended. Acceptance to the Polysonmographic Technology Degree Program is contingent upon acceptance to OIT. Detailed information and forms can be found on the OIT Distance Education Web site.
2. Applicants for the certificate program must be high school graduates. If a prospective candidate is not currently employed in a sleep facility, an appropriate site must be found and a clinical agreement between OIT and that facility must be established prior to admission.
3. Candidates must provide proof of completion of either a Cardio Pulmonary Resuscitation (CPR) course or a
Basic Cardiac Life Support (BCLS) course prior to enrollment.

4. Candidates must submit immunization records prior to their clinical placement.

5. Criminal background clearance is required prior to acceptance and some clinical sites may require drug screening.

Graduation Requirements
Minimum graduation requirements for the A.A.S are the successful completion of 48 credit hours of general education courses and 42 credit hours in the area of specialization with a GPA of 2.0 or better. In addition, a final grade of “C” or better must be earned in all professional courses (PSG, ECHO, RCP), communication courses and science/mathematics course to continue in the program. This requirement also applies to the certificate program.

In order to prepare for the national registry exam, students are required to participate in a practical exam and a comprehensive written exam at the conclusion of the certificate program. Students are required to come either to the OIT campus in Klamath Falls, Oregon or to Dayton, Ohio for one day of residency. Passage of these exams are required to complete the certificate program. Associate degree students who have already obtained their national licensure are not required to complete this requirement.

Polysomnographic Technology Certificate

Curriculum
A certificate will be awarded to students completing 44 credit hours of course work in polysomnography. This program is fully accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP). Completion of the certificate will allow the graduate to sit for the national registry exam in Polysomnographic Technology.

Required courses:

<table>
<thead>
<tr>
<th>Course #</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>ECHO 227</td>
<td>Basic ECG Recognition and Testing</td>
<td>3</td>
</tr>
<tr>
<td>PSG 211</td>
<td>Fundamentals of PSG and Patient Care</td>
<td>3</td>
</tr>
<tr>
<td>PSG 221</td>
<td>Physiology of Sleep</td>
<td>3</td>
</tr>
<tr>
<td>PSG 231</td>
<td>Sleep Disorders Pathology</td>
<td>4</td>
</tr>
<tr>
<td>PSG 246</td>
<td>Sleep Disorders in Women</td>
<td>3</td>
</tr>
<tr>
<td>PSG 264</td>
<td>Pediatric/Neonatal Polysomnography</td>
<td>4</td>
</tr>
<tr>
<td>PSG 272</td>
<td>Clinical Polysomnographic Technology I</td>
<td>9</td>
</tr>
<tr>
<td>PSG 273</td>
<td>Clinical Polysomnographic Technology II</td>
<td>9</td>
</tr>
<tr>
<td>RCP 120</td>
<td>Interventions in Gas Exchange</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

Demonstrated computer proficiency is required by the Board of RPGST. After completion of the Web-based program, the student will have demonstrated computer proficiency.

The two clinical polysomnographic technology courses require placement in clinical sites. Students are responsible for selecting an accredited sleep disorder facility prior to admission into the program. Site agreements between OIT and the accredited facility must be in place for the student to begin these courses. On-site preceptors will work in conjunction with OIT faculty to ensure an excellent training experience.

Associate of Applied Science in Polysomnographic Technology

Curriculum
All courses in the Certificate Program and all courses listed below are required to earn the A.A.S. degree:

<table>
<thead>
<tr>
<th>Course #</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 243</td>
<td>Introductory Statistics</td>
<td>4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology (PSY 201, PSY 202 or PSY 203)</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>Math/Science/Social Science elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours for A.A.S. Degree in Polysomnography

Polysomnographic Technology Certificate Courses	44
Additional Courses	46
Total Credit Hours	**90**
Respiratory Care Program

James Hulse, Program Director
Jeff Pardy, Clinical Education Director
David Panossian, Medical Director
John Ordal, Medical Director

Participating Faculty: D. Applegate, A. Bell, P. Cabrera, K. Christensen, D. Davis, C. Eckrode, L. McLaughlin, K. Rabe, D. Stone, A. Venes, D. Venes

Degrees Offered
Bachelor of Science in Respiratory Care

The bachelor of science degree program prepares the respiratory care student for entry into the respiratory care profession and eligibility for the National Board for Respiratory Care (NBRC) certificate examination (CRT) and registry examinations (RRT). Upon successful completion of the program, the graduate is eligible to apply for examination and state licensure.

Accreditation
The Respiratory Care Program is fully accredited by the Commission on Accreditation for Respiratory Care (www.coarc.com), 1248 Harwood Rd., Bedford, TX 76021, (817) 283-2835.

Career Opportunities
Registered respiratory therapists are physician extenders who, under medical direction, administer cardiopulmonary care, evaluate and assess pulmonary patients, and administer medications and diagnostic tests when appropriate. Their duties involve the use of many of the latest advances in medical arts, sciences, and technology. Graduates are employed in hospitals, physician’s offices, rehabilitation facilities, home-care agencies and health care promotion centers as caregivers, managers and educators.

Licensure
Students, when applying for licensure, will be asked if they have ever been convicted of a criminal offense, or if they have a history of drug or alcohol abuse. Students with a concern in this area should immediately contact the Oregon Respiratory Therapist Licensing Board (ORTLB) prior to applying to this program.

Program Objectives
Upon completion of the program, graduates will demonstrate:

1. Professional behavior consistent with employer expectations as advanced-level respiratory therapists (affective domain).
2. The ability to comprehend, apply and evaluate clinical information relevant to their roles as advanced-level respiratory therapists (cognitive domain).
3. The technical proficiency in all the skills necessary to fulfill their roles as advanced-level respiratory therapists (psychomotor domain).

Expected Program Learning Outcomes
Students in the program will demonstrate:

- The ability to communicate effectively in oral, written and visual forms.
- Knowledge of the respiratory care code of ethics and ethical and professional conduct.
- The ability to function effectively in the health care setting as a member of the healthcare team.
- Knowledge and application of mechanical ventilation and therapeutic.
- Knowledge and application of cardiopulmonary pharmacology and pathophysiology.
- Management of respiratory care plans for adult, neonatal and pediatric patients.

Pre-Respiratory Care Freshman Year
Enrollment is open to all students who meet the general entry requirements to Oregon Institute of Technology. Students will be listed as Pre-Respiratory Care students. Students will be selected into the professional curriculum based on cumulative grade-point average and nonsmoking status.

Students are strongly advised to complete all the general education courses in the freshman year curriculum before making application to the professional program.

Selections will be made at the end of the spring and summer terms of the Pre-Respiratory Care year. The number of students selected each year will be determined by the availability of clinical sites and other resources, which means that the number of qualified applicants may exceed the number of spaces available. When that is the case, students with the highest cumulative GPA are the first to be offered a position in the program.

Degree Completion Programs
The Respiratory Care Program offers a degree completion program for respiratory therapists who wish to pursue a bachelor’s degree in their field. The Commission on Accreditation for Respiratory Care does not accredit degree completion programs. The program is offered externally, utilizing mail, e-mail, fax and Internet delivery, and requires collaborative learning. Upon receipt of the necessary documentation, college credit will be given to qualified applicants for having passed the Registered Respiratory Therapist (RRT) examination. Each prospective student's academic credits will be individually evaluated to determine acceptability of the non-professional coursework and the sequencing of the professional courses. Every student must meet the OIT general education requirements for graduation. The Respiratory Care Degree Completion Program includes the presentation of a senior project.

Graduation Requirements
All credits listed in the curriculum for the catalog year a student begins a program must be fulfilled. A minimum of 186 credits must be completed and students must maintain a 2.00 GPA to be eligible for graduation. In addition, a final grade of “C” or better must be earned in all professional courses (RCP), communication courses and science/mathematics courses to continue in the program. All curricular requirements must be met within five academic years once the student is admitted into the professional program as a sophomore. Students must successfully pass SAE examinations and take and pass the CRT and RRT examinations as a condition of BS degree completion.
Bachelor of Science in Respiratory Care

Curriculum
Required courses and terms during which they may be taken.

Pre-Respiratory Care

Freshman Year Fall
BIO 231 Human Anatomy and Physiology I 4
CHE 101 Elementary Chemistry 3
CHE 104 Elementary Chemistry Laboratory 1
MATH 111 College Algebra or MATH 243 Introductory Statistics 4
WRI 121 English Composition 3
Total 15

Freshman Year Winter
BIO 232 Human Anatomy and Physiology II 4
PSY Psychology (PSY 201, PSY 202 or PSY 203) 3
WRI 122 English Composition 3
Humanities elective 3
Social Science elective 3
Total 16

Freshman Year Spring
BIO 200 Medical Terminology 2
BIO 233 Human Anatomy and Physiology III 4
SPE 111 Fundamentals of Speech 3
Humanities elective 3
Social Science elective 3
Total 15

Freshman Year Summer
COM 205 Intercultural Communication 3
WRI 227 Technical Writing 3
Humanities elective 3
Social Science elective 3
Math/Science/Social Science elective 1
Total 13

Professional Courses

Sophomore Year Fall
BIO 336 Essentials of Pathophysiology 3
RCP 100 Introduction to Respiratory Care 2
RCP 231 Pulmonary Physiology 4
RCP 235 Arterial Blood Gases 2
RCP 236 Cardiopulmonary Dynamics 4
Total 15

Sophomore Year Winter
BIO 105 Microbiology 4
CHE 360 Clinical Pharmacology for the Health Professions 3
PSG 221 Physiology of Sleep 3
RCP 241 Respiratory Gas Therapeutics 4
Total 14

Sophomore Year Spring
RCP 221 Introduction to Patient Assessment 5
RCP 252 Cardiopulmonary Pharmacology 4
RCP 336 Hyperinflation Therapies 3
SPE 321 Small Group and Team Communication 3
Total 15

Junior Year Fall
RCP 326 Disaster Preparedness 1
RCP 337 Pulmonary Pathology 4
RCP 351 Mechanical Ventilation I 4
RCP 388 Neonatal and Pediatric Respiratory Care 4
Total 13

Junior Year Winter
RCP 345 Cardiopulmonary Diagnosis and Monitoring 3
RCP 352 Mechanical Ventilation II 4
RCP 386 Critical Care 5
Total 12

Junior Year Spring
RCP 355 Pulmonary Rehabilitation and Geriatrics 4
RCP 350 Introduction to Clinical Psychology 3
RCP 353 Mechanical Ventilation III 4
RCP 366 Clinical Simulation 3
Total 15

Senior Year Summer
RCP 440 Case Management/Credentials I 3
RCP 450 Clinical Care I 12
Total 15

Senior Year Fall
RCP 441 Case Management/Credentials II 3
RCP 451 Clinical Care II 12
Total 15

Senior Year Winter
RCP 442 Case Management/Credentials III 3
RCP 452 Clinical Care III 12
Total 15

Bachelor’s Degree Completion Respiratory Care

The Respiratory Care program offers a degree completion program for registered technologists in good standing, who wish to pursue a bachelor’s degree in their field. The program is offered completely online. There is no on campus residency requirement.

Admission Procedures
1. Complete the Online Degree Completion Program Application for Admission.

2. Mail your application, a copy of your registry certificate, a check for $100 made out to Oregon Institute of Technology and signed Statement of Acknowledgement to the Distance Education Office.

3. Request official transcripts from all colleges you have attended to the Distance Education Office.

4. Request a letter of good standing from NBRC be mailed to the OIT Distance Education Office. This letter will enable the University Registrar to grant college credit based on your registry.

Courses granted for Registered Respiratory Therapist (RRT)

RCP 100 Introduction to Respiratory Care (waived) 2
RCP 221 Introduction to Patient Assessment 5
RCP 231 Pulmonary Physiology 4
RCP 235 Arterial Blood Gases 2
RCP 241 Respiratory Gas Therapeutics 4
RCP 252 Cardiopulmonary Pharmacology 4
RCP 335 Pulmonary Rehabilitation and Geriatrics 4
RCP 336 Hyperinflation Therapies 3
RCP 337 Pulmonary Pathology 4
RCP 345 Cardiopulmonary Diagnosis and Monitoring 3
RCP 350 Introduction to Clinical Psychology 3
RCP 353 Mechanical Ventilation III 4
RCP 366 Clinical Simulation 3
RCP 386 Critical Care 5
RCP 388 Neonatal and Pediatric Respiratory Care 4
RCP 450 Clinical Care I 12
RCP 451 Clinical Care II 12
RCP 452 Clinical Care III 12
OIT Degree Completion Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 220</td>
<td>Cardiovascular Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 336</td>
<td>Essentials of Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Clinical Pharmacology for the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>COM 205</td>
<td>Intercultural Communication</td>
<td>3</td>
</tr>
<tr>
<td>RCP 326</td>
<td>Disaster Preparedness</td>
<td>1</td>
</tr>
<tr>
<td>RCP 440</td>
<td>Case Management/Credentials I</td>
<td>3</td>
</tr>
<tr>
<td>RCP 441</td>
<td>Case Management/Credentials II</td>
<td>3</td>
</tr>
<tr>
<td>RCP 442</td>
<td>Case Management/Credentials III</td>
<td>3</td>
</tr>
<tr>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
</tr>
<tr>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Social Science elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Technical elective*</td>
<td>6</td>
</tr>
</tbody>
</table>

* Complete 6 credits from one of the technical areas listed below:
 - Advanced Respiratory Care Studies: RCP 486, RCP 487, RCP 488.
 - Education: AHED 450, AHED 451, AHED 452 or AHED 460
 - Management: BUS 316, BUS 317, or BUS elective approved by advisor.
 - Polysomnography: PSG 221, PSG 231 (4 credits), or PSG elective approved by advisor.

Prerequisite/Transfer Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 105</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 200</td>
<td>Medical Terminology</td>
<td>2</td>
</tr>
<tr>
<td>BIO 231</td>
<td>Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 232</td>
<td>Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy and Physiology III</td>
<td>4</td>
</tr>
<tr>
<td>CHE 101</td>
<td>Elementary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Elementary Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 111</td>
<td>College Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 243</td>
<td>Introductory Statistics</td>
<td>4</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology 201, 202, or 203</td>
<td>3</td>
</tr>
<tr>
<td>SPE 111</td>
<td>Fundamentals of Speech</td>
<td>3</td>
</tr>
<tr>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WRI 122</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>2</td>
</tr>
</tbody>
</table>
Graduate Programs
Admissions and Academic Policies

Graduate degree programs at Oregon Institute of Technology provide students with opportunities for advanced study in various disciplines. Graduates will develop the competence required for leadership roles in business and industry. Graduate education at OIT maintains a hands-on focus. Our mission is to integrate theory and practice.

Admission
The Office of Admissions, in conjunction with the Provost’s Office and the appropriate academic department, maintains all pertinent information regarding the admission of graduate students.

Admission Requirements
To be considered for admission to a graduate program, an applicant must have a baccalaureate degree from a regionally accredited college or university, as well as a scholastic record that evidences the ability to perform satisfactory graduate work. Specifically, a student shall:

• Have completed a four-year college course of study and hold an acceptable baccalaureate degree from an institution accredited by a regional accrediting association.
• Be in good academic standing at the last college or university attended.
• Have attained a grade point average of at least 3.0 on a 4.0 scale for the last 90 term (60 semester) units attempted.
• Have attained a grade point average of at least 3.0 on a 4.0 scale for the last 45 term hours in the major.
• Satisfactorily meet the professional, personal, scholastic, and other standards for graduate study.
• Some programs may require qualifying examinations.

Unusual circumstances may warrant exceptions to these criteria.

Application as a Degree-Seeking U.S. Resident Student
Degree-seeking students must submit the following items to the Office of Admissions before the deadlines specified in the Application Deadlines section:

• An official admissions application, along with a $50 non-refundable application fee. The application fee is waived for applicants who are currently attending OIT or who graduated from OIT within the previous two years.
• Official transcripts from each post-secondary educational institution attended.

Application as an International Degree-Seeking Graduate Student
OIT must assess the academic preparation of international students. For this purpose, international students, including those who hold U.S. visas as student exchange visitors or other non-immigrant classifications, should apply early. Official transcripts must be on file at least eight weeks before registration for the first term and, if not written in English, must be accompanied by a certified English translation.

All international applicants from countries in which English is not the native language must take the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System exam (IELTS). A minimum score of 550 paper-based TOEFL, 213 computer-based TOEFL, 79 Internet-based TOEFL, or 6.5
IELTS is required for consideration. This requirement may be waived for some students whose primary language is English. Since the results of this test constitute part of the material reviewed for admission to graduate studies at OIT, students should arrange to have their test scores sent directly from the testing agency to the Office of Admissions well before the application deadline.

The following is an application checklist for degree-seeking international students:

1. Submit the graduate application for admission with the $50 (U.S.) application fee.
2. Submit the international graduate student supplement to the graduate application form (as well as the Statement of Financial Responsibility form), available from the Admissions Office.
3. Provide evidence of ability to meet educational expenses at OIT. The Statement of Financial Responsibility form must be completed and submitted with documentation such as official bank statements and tax returns.
4. Official academic transcripts of all university course work sent to OIT.
5. For university course work done outside the United States, transcripts must be reviewed by an evaluation service. There are several such services that are acceptable. A “course-by-course evaluation” or a “detail report” is necessary.
6. Proof of proficiency in the English language. OIT requires that international graduate students Official test scores on the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System exam (IELTS). A minimum score of 550 paper-based TOEFL, 213 computer-based TOEFL, 79 Internet-based TOEFL, or 6.5 IELTS is required for consideration. This requirement may be waived for some students whose primary language is English.
7. Students currently in the United States should submit a photocopy of the I-20 form and passport.

Individual programs may have additional requirements.

Application Deadlines

OIT encourages all prospective students to submit graduate application materials six to nine months in advance of the planned enrollment date. However, applications will be accepted any time before the deadlines listed below. The recommended entrance time is fall term.

- Fall Term: July 1
- Winter Term: October 1
- Spring Term: January 1

Social Security Number Disclosure and Consent Statement

U.S. nationals are requested to voluntarily provide your Social Security Number to assist OUS (and organizations conducting studies for or on behalf of OUS) in developing, validating, or administering predictive tests and assessments; administering student aid programs; improving instruction; internal identification of students; collection of student debts; or comparing student educational experiences with subsequent work force experiences. When conducting studies, OUS will disclose your Social Security Number only in a manner that does not permit personal identification of you by individuals other than representatives of OUS (or the organization conducting the study for OUS) and only if the information is destroyed when no longer needed for the purposes for which the study was conducted. By providing your Social Security Number, you are consenting to the uses identified above. This request is made pursuant to ORS 351.070 and 351.085. Provision of your Social Security Number and consent to its use is not required and, if you choose not to do so, you will not be denied any right, benefit, or privilege provided by law. You may revoke your consent for the use of your Social Security Number at any time by writing to: University Registrar, Oregon Institute of Technology, 3201 Campus Drive, Klamath Falls, OR 97601.

Tuition and Fees

See the tuition and fees section of this catalog.

Graduate Assistantships

Oregon Institute of Technology offers graduate assistantships, awarded on a competitive basis, to qualified graduate students based on department needs. Compensation varies with the type of service, the amount of time required for performing the service, and the academic qualifications and experience of the appointee.

An applicant for a graduate assistantship must be admitted to a graduate program. Graduate departments usually award appointments and assistantships by early summer, effective at the beginning of the next academic year. A graduate assistant application form is available from the appropriate department.

Types of Assistantships

Graduate assistantships at OIT are either research assistantships (RAs) or teaching assistantships (TAs). Research assistantships are awarded by the faculty member administering the research grant and involve providing assistance in fulfilling the goals and objectives of the grant. Depending upon the grant, research assistantships may include additional support for summer term. If you are interested in a research assistantship, contact the faculty members responsible for the grant.

Teaching assistantships are awarded by the department and involve classroom and laboratory instruction. TAs are only awarded for nine-month periods during the academic year. If you are interested in a TA, contact the individual department to determine availability.

Assistantship Offer

Assistantship contracts are awarded annually and renewal is dependent upon competent performance of assistantship duties, adequate academic progress and the availability of funds. Assistantship appointments are for two academic years; however, under special circumstances, appointments may continue for a third and final year.
Assistantships may include a tuition waiver as well as a monthly stipend based upon a percentage of a full-time equivalent (FTE) salary. Graduate student stipends are not subject to Social Security (FICA) taxes but are subject to income taxes and should be reported on your tax return.

Assistantship Course Load

Graduate assistants are expected to maintain full-time enrollment (nine credits). Graduate assistants not enrolled in nine credits of formal courses must supplement the course load with thesis or project credits to maintain full-time enrollment status.

Satisfactory Progress

Graduate assistants must make satisfactory progress toward a graduate degree to retain a graduate assistantship. Satisfactory progress includes:

- Maintaining a 3.0 or higher grade point average.
- Maintaining full-time student enrollment.

Failure to maintain satisfactory academic progress will result in loss of an assistantship.

Academic Policies

The Graduate Council determines graduate academic policies at OIT. Other academic policies and procedures are described and/or defined in the general policies of OIT.

Student Rights and Responsibilities

OIT encourages students to perform at a high academic level, and students are responsible for knowing degree requirements and enrolling in courses that will enable them to complete the master's program. OIT expects students to conduct themselves in a manner compatible with the university's function as an institution of higher learning. Students should acquaint themselves with regulations for the standard of work required to continue in the graduate school. For additional information, students should consult their graduate advisor.

Academic Integrity

OIT’s goal is to foster an atmosphere that produces educated, literate graduates. Academic misconduct, such as cheating and plagiarism, will not be tolerated.

Cheating includes, but is not limited to, the following:

- Use of any unauthorized assistance in taking quizzes, tests or examinations.
- Dependence upon the aid of sources specifically prohibited by instructors in writing papers, preparing reports, solving problems or carrying out other assignments.
- The acquisition, without permission, of tests or other academic materials belonging to a faculty member of the school.

Plagiarism includes, but is not limited to, the use, by paraphrase or direct quotation, of the published or unpublished work of another person without acknowledging the source. Plagiarism occurs when a student either copes the work of another person and attempts to receive credit for that work or acquires and uses prepared material from someone who is selling academic materials. These examples are intended to provide general guidelines and are in no way comprehensive in describing academic dishonesty.

Faculty may assign specific penalties for cases of academic misconduct, including a failing grade for a test or assignment, a reduced grade for a test or assignment, or a failing grade in the course. Responding to academic dishonesty is the responsibility of the course instructor. If a student commits plagiarism or other academic dishonesty during the graduate project, the advisor, in consultation with the dean, determines the appropriate response.

All graduate students should acquaint themselves with the definitions and implications of academic misconduct as explained in OIT’s student conduct code. Repercussions for a student guilty of academic conduct violations range from a warning to expulsion.

Students may contest a charge of academic misconduct by following the grievance procedure outlined in the OIT catalog and the student handbook, available on the OIT Web site.

Student Records

The Registrar's Office maintains a permanent file for each graduate student. Faculty advisors will maintain a file of advising records, grade information and other correspondence pertaining to each graduate student's academic progress. For more information on student records, contact the Registrar's Office.

Enrollment Status

Full and part time credit loads for graduate students are defined as follows:

- Full time: 9 or more credits
- 3/4 time: 7 - 8 credits
- Half time: 5 - 6 credits

OIT undergraduate seniors may enroll in 500-level graduate courses for graduate credit with the approval of the student's undergraduate advisor and the graduate program director. Nine credits are applicable to a graduate degree.

Students who are not yet admitted to OIT may take up to nine credits which can apply toward the graduate degree. These courses cannot count for both undergraduate and graduate credits.

OIT offers some courses which are dual-listed at the 400- and 500-level. The 400-level courses apply only to an undergraduate degree, while 500-level courses apply only to a graduate degree. Students enrolled in a dual-listed 500-level course will be required to complete additional work to obtain graduate credit.

Academic Prerequisite Deficiencies

Students who have prerequisite deficiencies for graduate studies may be required to take additional course work prior to completing their graduate studies, as determined by the graduate program director. If there are
deficiencies, the director will recommend substitute courses, and these are entered on the Graduate Program Form. When students pass these courses with a B or better, they become fully qualified graduate students. Prior to completion of the listed courses, the graduate student is considered "conditionally admitted."

Academic Performance Standards
Students must maintain a cumulative GPA of 3.0 or better in all graduate work specific to the program of study to remain in good academic standing. Grades below C do not meet requirements for a graduate degree.

Graduate students earning a cumulative GPA of less than 3.0 will be placed on probation and, if no improvement is made, will be suspended from the graduate program. Conditions established for probation and suspension are listed below:

Academic Probation: Students having 9 or more attempted credit hours will be placed on academic probation for each term that their cumulative GPA falls below 3.0.

Academic Suspension: Students who have served one term on academic probation and have not raised their graduate cumulative GPA to 3.0 in the next term will be placed on academic suspension. Suspected students lose their institutional financial aid, including graduate research and teaching assistantships.

A student may appeal academic suspension by following the process outlined in the OIT catalog. A successful appeal results in probation status.

Transfer Credits
Students may petition to transfer up to 12 graduate term hours earned at other accredited institutions and apply those credits toward an OIT graduate degree. However, each course must be consistent with the program of study planned by the student and the graduate advisor. Only grades of A and B are acceptable as transfer credit into the graduate program.

Grading Policy
OIT uses a 4.0 grading scale to evaluate student performance. Upon completion of a course or upon termination of attendance in the course, a student's performance will be graded by the instructor and reported to the Registrar's Office.

Withdrawals
Students may withdraw from a course during the first 10 days of class with no entry on the permanent academic record, except for complete withdrawal from all classes. After this date and through Friday of the seventh week, students who withdraw from a class will receive a W, which is not included in the grade point average. After Friday of the seventh week, students will receive a letter grade assigned by the instructor.

A complete withdrawal from all courses is possible at any time during the term until the last day of class by filing the proper forms with the Registrar's Office. Specific deadlines are published in the quarterly class schedule.

While it is the student's responsibility to properly withdraw from a class, an instructor may administratively withdraw a student for non-attendance.

Academic Requirements
Graduate degree academic requirements are specified by the program. The student, in conference with the graduate faculty advisor, will prepare a program of study for the graduate degree as a guide for planning an academic schedule. The student must then submit the proposed program to the graduate program director for approval.

Application for Graduation
To apply for graduation, the student must submit a petition for graduation to the Registrar's Office two terms in advance of the anticipated final term of work. The petition is a record of the approved program of study. To receive favorable action, candidates must meet the following requirements:

- Show that course requirements for the master's degree will be satisfied before or during the final term
- Maintain an overall grade point average of at least 3.0
- Provide evidence of passing any qualifying or comprehensive examinations, including defense of the master's project or thesis

Right of Appeal
Students have the right to appeal academic policies or requirements. Grade appeals should be initiated through the instructor, graduate program coordinator, and the dean. For appeals regarding specific degree requirements, students should consult their graduate advisor, the graduate program coordinator, and the Graduate Council. Students should submit all other academic policy appeals in writing to the Graduate Council through the Provost's Office.
Course Descriptions

Course descriptions in this section are reasonable summaries only and are neither completely inclusive nor completely exclusive of total course content for any given course.

Courses listed herein may or may not be offered each term. Absence of an (F, W, or S) does not necessarily mean the course is offered each term.

Courses are listed alphabetically according to prefix.

Numbering Code
Courses are grouped into a three-digit number series which indicates the normal teaching levels. Some variations may occur.

- **1-99** Preparatory and Developmental Courses
 - Courses numbered below 100 are not applicable toward a degree even though units are assigned, grades are awarded and tuition is assessed.

 - **Lower-Division Courses (freshman and sophomore)**
 - 100-199 First-Year Courses
 - 200-299 Second-Year Courses

 - **Upper-Division Courses (junior and senior)**
 - 300-399 Third-Year Courses
 - 400-499 Fourth-Year Courses

 - **Graduate Courses**
 - 500-599 Graduate Courses

Other Codes

Each Term:
Some courses in this section have a code following the course title. This code designates when the course will be offered. F indicates fall, W indicates winter, S indicates spring.

Even or Odd:
When accompanying a course description, these terms indicate that a given course is offered during the designated term or terms every other year only. For example:

- **MATH 355** Graphical Analysis
 - (F, Even)

 means that this course is offered only in even numbered years during the fall term.

Lecture, Lab, Credit Hours:
The three numbers following the course title. For example:

- **CST 101** Introduction to Personal Computing
 - (3-3-4) = weekly lecture hours – lab hours – total credits
Special Terms

As Required: This term designates a course or series of courses which will be offered only as enrollment, student interest, or individual department needs demand and as staffing allows. A course so designated may be offered if special student needs, situations of extreme hardship, or other unusual circumstances deem it in the best interest of both the student(s) and the institution to do so.

Hours to be Arranged Each Term: Normally students negotiate individually with faculty members and/or departments and arrange to have courses so designated offered for the term most suitable to their unique situation.

Corequisite: A course that must be taken simultaneously with another course. Corequisites are noted at the end of each course description.

Prerequisite: A course that must be passed satisfactorily before another course may be taken. Prerequisites are noted at the end of each course description.

Quarter Credit: A numerical credit value assigned to certain number of lecture or laboratory hours. A lecture class meeting for three 50-minute periods a week would be assigned three units of credit. Students have traditionally been expected to spend an additional six hours of outside class work per week for each three units of lecture class credit. Generally, a lab class requires three hours per week for one unit of credit, or a total of nine in-lab hours with no additional outside class work expected for three units of lab class credit.

Reading and Conference: A course taken on an independent study basis with the supervision of an instructor, usually consisting of weekly conferences, assigned readings, research papers, etc.

Seminar: A class taught by a group discussion process rather than by means of formal lecture. Student research and reporting are usually expected.

Sequence: A series of classes in the same subject area that, taken as a whole, comprise a full year's work. Generally, course sequences are numbered consecutively, and often (though not always) should be taken in the numerical order listed (i.e., CHE 201 should be taken before CHE 202, etc.).

(ACC) Accounting

ACC 101 Introduction to Accounting
(3-0-3)
The principles of elementary accounting systems for small businesses.

ACC 107, ACC 207, ACC 307, ACC 407 Seminar
(Hours to be arranged each term.)

ACC 115 Basic Income Tax Preparation
(2-4-3)
Federal and state laws, ethics and regulations applicable to individual income tax returns. Prepares tax preparers for the qualifying examination and meets the personal needs of individuals preparing their own returns.

ACC 124 Business Math/Machines
(3-0-3)
Business math such as decimals, percents, markups, proration and interest. Emphasis on operational techniques of electronic calculators for problem solving.

ACC 201 Principles of Accounting I
(4-0-4)
Introduction to terminology, content and form of financial statements for sole proprietorships. Recording of data for use in preparing profit-and-loss statements and balance sheets. Prerequisite: MATH 100 or equivalent.

ACC 202 Principles of Accounting II
(4-0-4)
A continuation of ACC 201 with emphasis on corporate accounting. Prerequisite: ACC 201 with grade "C" or better.

ACC 203 Principles of Managerial Accounting
(4-0-4)
Theory and procedure in gathering cost data and their use in analyzing and controlling operation costs: job-order and process-cost systems. Technique of standard costs, analysis of variance, managerial reports and specialized cost programs including activity based costing systems. Prerequisite: ACC 201 with grade "C" or better.

ACC 205 Computerized Accounting
(2-3-3)
Spreadsheet software used to solve accounting problems, model-building techniques. Integrated accounting software introduced. Prerequisite: ACC 201.
ACC 245 Payroll Accounting
(3-0-3)
Covers federal and state laws pertaining to wages, payroll taxes, payroll tax forms and journal and general ledger transactions. Emphasis is placed on computing wages; calculating social security, income and unemployment taxes; preparing appropriate payroll tax forms; and journalizing/posting transactions.
Prerequisite: ACC 101 or ACC 201.

ACC 295 Individual Studies
(Hours to be arranged each term.)

ACC 298 Reading and Conference
(Hours to be arranged each term.)

ACC 299 Laboratory Practice
(Hours to be arranged each term.)

ACC 320 Cost Accounting I
(4-0-4)
Cost accumulation systems including job order costing, process costing and activity-based costing will be explored. Techniques to control and evaluate operations including variance analysis based on flexible budgets and standard costs.
Prerequisite: ACC 203 with grade “C” or better.

ACC 321 Cost Accounting II
(4-0-4)
Continuation of Cost Accounting I. Strategic planning and financial budgeting. Cost measurement, planning, control and performance evaluation and behavioral issues. The role of responsibility accounting for revenue, cost, contribution and profit centers will be investigated.
Prerequisite: ACC 320 with grade “C” or better.

ACC 325 Finance
(4-0-4)
Emphasis on working capital management, long-term finance and capital structure.
Prerequisites: ACC 203 and MATH 105 or MATH 111.

ACC 331 Intermediate Accounting I
(4-0-4)
Financial accounting concepts, theory and practices involving current asset accounts; practical application of theory to accounting problems.
Prerequisite: ACC 202 with grade “C” or better.

ACC 332 Intermediate Accounting II
(4-0-4)
Accounting concepts, theory and practices involving ownership equities, interpretation, analysis of financial statements and correction of errors; practical application of theory to accounting problems.
Prerequisite: ACC 331 with grade “C” or better.

ACC 333 Intermediate Accounting III
(4-0-4)
Accounting concepts, theory and practices involving plant assets, intangible assets and liabilities; practical application of theory to accounting problems.
Prerequisite: ACC 332 with grade “C” or better.

ACC 405 Accounting Information Systems
(4-0-4)
Analysis of accounting cycles and the associated controls with emphasis on problem solving and critical thinking. Includes computerized accounting system implementation.
Prerequisites: ACC 332, MIS 275, MIS 312.

ACC 411 Income Tax Procedures
(4-0-4)
Federal and state income tax laws and regulations applicable to individuals and their businesses including computerized tax return preparation.
Prerequisite: ACC 333 with grade “C” or better.

ACC 412 Corporate Taxation
(4-0-4)
Federal tax law applicable to corporations, partnerships and estates. Emphasis on tax research procedures and locating and evaluating various sources of tax law.
Prerequisite: ACC 411 with grade “C” or better.

ACC 421 Income Tax Procedures Laboratory
(0-6-2)
Lab accompanying class content in ACC 411.

ACC 431 Advanced Accounting I
(4-0-4)
Prerequisite: ACC 333 with grade “C” or better.

ACC 432 Advanced Accounting II
(4-0-4)
Analysis of problems facing small, medium and large companies, with emphasis upon an integrated and concurrent decision making methodology applying economics, finance, organizational theory, quantitative analysis and accounting and tax theory.
Prerequisite: ACC 431 with grade “C” or better.

ACC 435 Auditing
(4-0-4)
Introduction to auditing concepts and practices. Topics include professional standards, audit planning and procedures, ethical considerations, internal controls, professional responsibilities, the acquisition and evaluation of audit evidence and report writing.
Prerequisites: ACC 333, ACC 405, both with grade “C” or better.

ACC 465 Case Studies in Accounting
(4-0-4)
The use of accounting cases to develop problem solving/critical thinking skills. Application of the case methodology to all areas of accounting.
Prerequisites: ACC 431, ACC 435, ACC 496, all with grade “C” or better.

ACC 496, ACC 497 Senior Project
(3-0-3)
Development and implementation of an accounting related project for the benefit of an external entity and the student. Projects will include a proposal, analysis, design and implementation. An oral presentation and project documentation will be required at the completion of each course.
Prerequisites: ACC 320 and ACC 405, or instructor consent.
(AHED) Allied Health Education

AHED 107, AHED 207, AHED 307, AHED 407 Seminar
(Hours to be arranged each term.)

AHED 450 Instructional Methods
(3-0-3)
Students develop instructional content and an instructional plan for teaching topics for adult learners. Teaching methods, learning styles, student and instructor evaluation and use of media will be discussed.
Prerequisite: DH 380 or admission to RCP or BDH degree completion program.

AHED 451 Instructional Experience
(2-3-3)
Students create and structure their own instructional experience, participate in a clinical or laboratory setting as a supervising instructor, present a didactic unit using visual aids.
Prerequisite: AHED 450.

AHED 452 Instructional Practicum
(0-9-3)
Student and faculty advisor design an individualized teaching experience. A learning contract is written and implemented.
Prerequisite: AHED 451 or AHED 460.

AHED 460 Fundamentals of Distance Education
(3-0-3)
Students learn the fundamentals of online teaching and learning. Lesson plan developed in AHED 450 will be finalized as an online module. Synchronous vs. asynchronous learning, instructional design and course management as it relates to online instruction will be discussed.
Prerequisite: AHED 450.

(ANTH) Anthropology

ANTH 101 Introduction to Physical Anthropology
(3-0-3) SS
An introduction to physical anthropology, emphasizing man's place in the animal kingdom, evolution of man, fossil hominid forms, Paleolithic cultures and principles of genetics. Satisfies either a science elective or a social science elective.

ANTH 102 Introduction to Archeology
(3-0-3) SS
Survey of the science of archeology. Covers the biological and social evolution of the human species with emphasis on the growth of human populations and social complexity. Relates site-specific evidence to theories of social change. Discusses field and laboratory methods of archeology.

ANTH 103 Introduction to Cultural Anthropology
(3-0-3) SS
Culture, language, subsistence patterns, group formation, kinship, economic systems, political organizations, religion and cultural change.

ANTH 107, ANTH 207, ANTH 307, ANTH 407 Seminar
(Hours to be arranged each term.) SS

ANTH 335 The Built Environment
(3-0-3) SS
An examination of the American built environment from historical to modern times and the role it plays in shaping American Society. The topics include city planning, architecture, transportation technologies, dam and bridge building and urban sprawl.

ANTH 452 Globalization
(3-0-3)
Addresses what globalization is and how it developed and spread. Benefits and harms of globalization in the areas of work, culture, warfare, national sovereignty, health and food. Countervailing pressures from social movements will be examined.
Prerequisite: WRI 122.

(ART) Art

ART 107, ART 207, ART 307, ART 407 Seminar
(Hours to be arranged each term.) H or HP

ART 220 Basic Drawing
(0-6-3) HP
Designed for the student who has an interest in exploring the field of pictorial representation but has had, for a variety of reasons, little opportunity to do so.

ART 225 Basic Photography
(3-0-3) HP
A non-darkroom course emphasizing design elements, lighting and exposure. Topics include types of cameras, lenses, films and special techniques. 35mm camera required.

ART 280 Introductory Painting
(0-6-3) HP
Offers an opportunity to study rendering in color by exposure to a study of color and color mixing, tones and values with an introduction to acrylics, watercolors and oils.

ART 281 Modern Painting Techniques
(2-3-3) HP
Introduction to art from the modern masters, design, composition and color theory. Students will create original paintings.
Prerequisite: ART 280 or instructor consent.

(BIO) Biology

BIO 101 General Biology
(3-3-4)
Introduction to cell biology, genetics and evolution.

BIO 102 General Biology
(3-3-4)
Consideration of phylogenetic relationships of the major groups of plants and animals.

BIO 103 General Biology
(3-3-4)
Basic animal physiology with emphasis on humans. (Cannot be used for graduation credit by students who have taken BIO 231, BIO 232 or BIO 233.)

BIO 105 Microbiology
(3-3-4)
Classification, morphology, reproduction, transmission and control of micro-organisms causing disease in man. Laboratory practice in culturing methods, microscopic observation and physical and chemical control.

BIO 107, BIO 207, BIO 307, BIO 407 Seminar
(Hours to be arranged each term.)

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
Courses with the following notation fulfill the appropriate general education requirements:

C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.

BIO 111 Introduction to Environmental Sciences
(3-3-4)
A topical overview of environmental sciences stressing the integration of the social, natural and physical sciences. Emphasis on active learning.

BIO 112 Introduction to Data Analysis
(1-0-1)
Skills in sampling design, analysis and quality control measures essential in acquiring defensible environmental data. Use of time series analysis, spreadsheets for data analysis and graphical display including trend lines, histograms and cumulative frequency distributions. Basic computer proficiency is expected.

BIO 200 Medical Terminology
(2-0-2)
Basic structure of medical works including prefixes, suffixes, roots and combining forms. Correct spelling, pronunciation and meaning of terms are stressed.

BIO 205 Nutrition
(3-0-3)
A study of the relationships of food and nutrition to health. An overview of the basic nutrition principles including the nutrients and how they function in the body, nutrient requirements, diet planning and energy balance. Current topics and controversies are examined. Pre- or corequisite: CHE 103 or BIO 213 or instructor consent.

BIO 209 Current Research Topics in Medical Sciences I
(1-0-1)
Introduces students to topics in medicine focusing on global health issues, infectious and chronic diseases. Projects in medical literature research, understanding scientific paper format, preparing technical presentations and public speaking. Prerequisite: Biology or Health Sciences major or instructor consent.

BIO 211 Principles of Biology
(3-3-4)
Principles of modern biology emphasizing form and function of multicellular plants, major invertebrate phyla and general vertebrate morphology and physiology.

BIO 212 Principles of Biology
(3-3-4)
Principles of modern biology emphasizing evolution, ecology, population genetics and behavior of organisms. Prerequisite: BIO 211 with grade “C” or better, or with instructor consent.

BIO 213 Principles of Biology
(3-3-4)
Principles of modern biology emphasizing the biochemical basis for life processes, cell structure and function. Molecular genetics, cell reproduction, metabolism and form and function of microorganisms. Prerequisite: BIO 212 with grade “C” or better, or with instructor consent.

BIO 216 Introduction to Veterinary Medicine
(3-3-4)
Covers many aspects of animal health and their impact on society. Discussions of husbandry, anatomy, preventive medicine, common diseases and behavioral problems of dogs, cats, horses and exotics. Some hands-on work with dogs, horses and wildlife is included.

BIO 219 Current Research Topics in Medical Sciences II
(1-9-4)
Continuation of the systematic study of human anatomy and physiology of excitable tissues. The laboratory sessions emphasize human anatomy using models and human cadavers.

BIO 221 Principles of Biology
(3-3-4)
Principles of modern biology emphasizing the biochemical basis for life processes, cell structure and function. Molecular genetics, cell reproduction, metabolism and form and function of microorganisms. Prerequisite: BIO 212 with grade “C” or better, or with instructor consent.

BIO 225 Riparian Assessment Methods
(3-3-4)
Introduces students to topics in medicine focusing on global health issues, infectious and chronic diseases. Projects in medical literature research, understanding scientific paper format, preparing technical presentations and public speaking. Prerequisite: Biology or Health Sciences major or instructor consent.

BIO 226 Introduction to Wildlife Rehabilitation
(3-0-3)
Principles of wildlife rehabilitation including state and federal laws, medical terminology, basic anatomy, natural history and diet, form and function and euthanasia. Field captures, basic restraint, first aid, minimum housing requirements and zoonotic diseases are also included.

BIO 227 Introduction to Forensic Science
(3-3-4)
An entry-level course exploring the methodologies and procedures utilized by crime scene investigators and forensic laboratories. Emphasis on crime scene investigation, recognition, documentation and collecting of physical evidence. Laboratory exercises provide hands-on opportunities supplementing lecture topics.

BIO 231 Human Anatomy and Physiology I
(3-3-4)
Introduction to the systematic study of human anatomy and physiology. Introduction to cytology and histology followed by the integumentary, skeletal, muscular and endocrine systems and the anatomy of excitable tissues. The laboratory sessions emphasize human anatomy using models and human cadavers.

BIO 232 Human Anatomy and Physiology II
(3-3-4)
A continuation of the systematic study of human anatomy and physiology. The nervous, cardiovascular and immune systems are studied. The laboratory sessions emphasize human anatomy using models and human cadavers. Dissections and physiological experiments are conducted. Prerequisite: BIO 231 with grade “C” or better.

BIO 233 Human Anatomy and Physiology III
(3-3-4)
Conclusion of the sequence in human anatomy and physiology. Digestive, respiratory, renal and reproductive systems are examined. Metabolism, human genetics and development are also studied. Laboratory sessions emphasize physiological experiments and human anatomy using models and human cadavers. Prerequisite: BIO 232 with grade “C” or better.

BIO 235 Human Genetics
(3-0-3)
Genetic concepts using human examples, including the molecular and cellular basis of inheritance, patterns of inheritance, basic pedigree analysis, mutation, single-gene and polygenic diseases and an introduction to genetic biotechnology. Prerequisite: BIO 233.

BIO 261 Sophomore Project Proposal
(1-0-1)
Review of the scientific method and scientific research procedures. Identification of a research topic. Preparation and presentation of a research proposal. Prerequisite: BIO 213 or instructor consent.

BIO 262 Sophomore Project
(1-9-4)
Completion of field, laboratory, or investigative project with agencies, faculty members, or industry. Includes data collection, analysis and presentation of report. Prerequisite: BIO 261 or instructor consent.
BIO 265 Field Methods in Environmental Sciences
(1-3-2)
Basic principles of experimental design, site and instrument selection for field research. Basic instrumentation and data acquisition techniques are used to contribute to authentic research programs at different locations alongside environmental science professionals.

BIO 313 Botany
(2-6-4)
Field study and identification of the flora of the Pacific Northwest. Vascular plants will be emphasized; algae, fungi and bryophytes will be considered. Principles of plant classification and common plant families are taught. A plant collection is prepared.
Prerequisite: BIO 211 or instructor consent.

BIO 317 Invertebrate Biology
(3-3-4)
Survey of invertebrate animals, including morphology, physiology, ecology and phylogeny; comparative anatomy of typical metazoan forms. Laboratory exercises focus on parasites and other economically important species. Intended for biology and pre-professional health majors.
Prerequisite: BIO 213 or equivalent.

BIO 325 Applied Aquatic Botany
(2-3-3)
Ecology, taxonomy and economic significance of aquatic plants, including algae. Emphasis placed on determination of contaminants in the physical or biological environment.
Prerequisite: BIO 211.

BIO 327 General Ecology
(3-3-4)
An examination of ecological principles applied to microhabitats, habitats and ecosystems. Includes community ecology, population ecology and resource analysis, supplemented by regional and local field exercises with training in measurement and collection of ecological components.
Corequisites: GEOG 105, BIO 111 and BIO 213.

BIO 331 Human Anatomy and Physiology I
(3-6-5)
An in-depth systematic study of human anatomy and physiology of the integumentary, skeletal and muscular systems. Laboratories include histology, examination of human bones, cadaver dissection, computer-aided physiology studies and other hands-on activities.
Pre- or corequisite: BIO 200 or instructor consent.
Prerequisites: BIO 213 and CHE 223, both with grade “C” or better.

BIO 332 Human Anatomy and Physiology II
(3-6-5)
An in-depth systematic study of human anatomy and physiology of nervous, endocrine and cardiovascular systems. Laboratories will include histology, cadaver dissection, computer-aided physiology studies and other hands-on activities.
Prerequisite: BIO 331 with grade “C” or better, or instructor consent.

BIO 333 Human Anatomy and Physiology III
(3-6-5)
An in-depth systematic study of human anatomy and physiology of the lymphatic, respiratory, digestive, urinary and reproductive systems and an overview of embryology. Laboratories will include histology, cadaver dissection, computer-aided physiology studies and other hands-on activities.
Prerequisite: BIO 332 with grade “C” or better, or instructor consent.

BIO 335 Cross-Sectional Anatomy
(3-0-3)
Cross-sectional anatomy correlated with computer tomography, ultrasonography and magnetic resonance imaging.
Prerequisite: BIO 233.

BIO 336 Essentials of Pathophysiology
(3-0-3)
Study of dynamic aspects of disease process with emphasis on abnormal physiology. Detailed discussion of cellular alterations, normal immunology, neoplasia, inflammation and alterations of the respiratory and skeletal systems and Diabetes Mellitus.
Prerequisites: BIO 200 and BIO 233.

BIO 337 Aquatic Ecology
(2-6-4)
Aquatic ecosystems, patterns of development, population dynamics, diversity and energy cycles in marine and freshwater communities. Local and extended one- or two-day field trips to study different ecosystems off-campus. Procedures for sampling, data collection, numerical modeling and simulation studies of aquatic pollutants.
Prerequisites: BIO 212, BIO 327.

BIO 341 Medical Genetics
(3-0-3)
Prerequisite: BIO 213 or BIO 233 or instructor consent.

BIO 342 Cell Biology
(3-3-4)
Organelle organization, protein sorting, cell signaling, cytoskeletal functions, cell division mechanics and cell interactions in development and aging.
Prerequisite: BIO 213 or instructor consent.

BIO 345 Medical Microbiology
(4-3-5)
Mechanisms of pathogenicity and virulence relating to disease-causing viruses, bacteria, fungi and other microorganisms. Host-parasite relationships and immunology, microbial physiology and genetics. Laboratory procedures and identification of selected bacteria and parasites.
Prerequisite: BIO 213 or BIO 233 or instructor consent.

BIO 346 Pathophysiology I
(3-0-3)
Study of the dynamic aspects of the disease process with emphasis on abnormal physiology. Detailed discussion of cellular alterations, normal and abnormal immunology, neoplasia, inflammation, atherosclerosis, hypertension, cardiac and vascular diseases.
Prerequisites: BIO 200 and BIO 233 or BIO 331 with grade “C” or better, or instructor consent.

BIO 347 Pathophysiology II
(3-0-3)
Study of the dynamic aspects of the disease process with emphasis on abnormal physiology. Detailed discussion of alterations of respiratory function, liver and digestive system, neurologic, urinary, musculoskeletal disorders and Diabetes Mellitus.
Prerequisite: BIO 346 with grade “C” or better, or instructor consent.

BIO 351 Vertebrate Biology
(3-3-4)
This course will explore both diversity and evolutionary history of the vertebrates. Emphasis placed on functional morphology and adaptive physiology as related to the evolutionary history of each vertebrate class. The laboratory will introduce basic vertebrate structure and morphological adaptation.
Prerequisite: BIO 213.

BIO 352 Developmental Biology
(3-3-4)
This course will explore the developmental processes of selected invertebrate and vertebrate groups. The events of gametogenesis, fertilization, gastrulation, neurulation and post-embryonic development will be discussed. The role of differential gene expression in developmental pathways will be covered.
Prerequisite: BIO 213.
BIO 357 Introduction to Neuroscience
(3-0-3)
This is an introductory course covering the organization and function of the human nervous system to build a foundation of general knowledge in neurobiology of such topics as sensory/motor systems, the brain and behaviors, the biological basis of brain development and learning and memory. Prerequisite: BIO 232 or BIO 332 or PSY 339 or instructor consent.

BIO 365 Advanced Field Methods in Environmental Sciences
(1-3-2)
Advanced principles of experimental design, site and instrument selection for field research. Advanced instrumentation and data acquisition techniques are used as part of authentic research programs at different locations alongside environmental science professionals. Course may be repeated for credit. Prerequisites: MATH 112 and WRI 122.

BIO 409 Current Research Topics in Medical Sciences II
(2-0-2)
A continuation of BIO 209 covering topics in medicine focusing on global health issues, infectious and chronic diseases. Projects in medical literature research, understanding scientific paper format, preparing technical papers and presentations, and public speaking. Prerequisite: BIO 209 or instructor consent.

BIO 426 Evolutionary Biology
(3-0-3)
Principles of evolutionary science, including speciation, biogeography, biodiversity, population genetics, natural selection and coevolution. Prerequisite: BIO 213 or instructor consent.

BIO 428 Animal Behavior
(3-0-3)
The biological foundations of animal behavior are presented from an ethological and comparative psychology perspective. Emphasizes the evolution, development and physiological basis of behavior patterns and presents topics on learning, perception, orientation, communication and social behavior. (Cannot be taken for graduation credit by students who have taken PSY 428.) Prerequisite: PSY 202 or BIO 213.

BIO 434 Data Analysis Methods
(3-3-4)
Fundamental principles of data analysis from field projects, data archives and other sources. Analysis of variance, hypothesis testing, random processes. Regression and times series analysis. Discussion and practice of data visualization and presentation techniques. Prerequisite: MATH 243 or MATH 361.

BIO 436 Immunology
(3-3-4)
Cellular and humoral immunology including innate immunity, acquired immunity, antibodies, anatomy of immune response, production of effectors, adversarial strategies during infection, immunodeficiency and transplantation. Prerequisite: BIO 213 or BIO 233 or instructor consent.

BIO 461, BIO 462 Human Cadaver Dissection
(0-3-1)
Study of human anatomy utilizing cadaver dissection. Attention will be given to three-dimensional relationships of structures, appreciation of textural differences and development of palpation skills. Recognition of pathologic abnormalities and individual variations will be investigated. Prerequisites: BIO 233 or BIO 333 and consent of instructor.

BIO 471 Senior Project Proposal Research
(1-0-1)
Review of the scientific method and scientific research procedures, identification of a research topic and preparation for writing a research proposal. Prerequisite: BIO 262.

BIO 472 Senior Project Proposal
(1-0-1)
Review of research procedures including research ethics, project management, instrumentation, field methods for data acquisition and data analysis. Development and presentation of a research proposal. Prerequisite: BIO 471.

BIO 473 Senior Project Data Collection
(1-6-3)
Independent completion of field, laboratory, or investigative project in collaboration with agency, faculty or industry professionals. Includes data collection, initial analyses and presentation of initial findings. Prerequisite: BIO 472.

BIO 474 Senior Project Data Analysis and Presentation
(0-5-2)
Application of appropriate statistical methods to data collected by students as part of their senior projects. Advanced techniques introduced as appropriate. Presentation of senior project data. Emphasis on the design, preparation and delivery of effective written and oral presentations. Prerequisite: BIO 473; BIO 434 or MATH 362.

BIO 484 Sustainable Human Ecology
(2-6-4)
Investigation of global interconnections between humans and natural systems through the study and application of ecological principles. Ethical and ecological considerations are used to solve complex environmental problems. Laboratories involve field work with local experts. Prerequisite: BIO 327 or CIV 315 or instructor consent.

BIO 485 Klamath Bioregional Studies
(3-0-3)
The Klamath River Bioregion from an integrated ecological perspective. Team project in assessing current socioeconomic, cultural and ecological conditions in the bioregion and developing management strategies for sustainable resource use. Prerequisites: BIO 225 and BIO 327, or instructor consent.

(US) Business

BUS 101 Introduction to Business
(3-0-3)
Business organization and business fundamentals. Coverage of the basic functions of management, marketing, production, accounting, finance and other business areas. Examination of economic, cultural, ethical and additional issues and trends affecting business.

BUS 107, BUS 207, BUS 307, BUS 407 Seminar
(Hours to be arranged each term.)

BUS 215 Principles of Management
(3-0-3)
Introduction to management organization in industrial and service organizations. Functional aspects of organizational history. Team concept management, corporate cultures and business ethics. (Cannot be taken for graduation credit by students who have taken BUS 304 or BUS 317.)
BUS 223 Principles of Marketing
(3-0-3)
Fundamentals of marketing. Product, price, promotion and place as basic concepts in modern marketing, Consumer behavior, competition, legal, ethics and other influences in the marketplace.

BUS 226 Business Law
(3-0-3)
The fundamentals of business law: the structure of federal and state courts and agencies, their decision processes; the legal structure of modern business organizations including closely and publicly held corporations, partnerships, limited partnerships, nonprofit corporations, sole proprietorships and limited liability companies; contract law; Uniform Commercial Code; tort law and its implications for business; administrative law; and criminal law as it applies to business and industry.

BUS 304 Engineering Management
(3-0-3)
The engineering management process. The unique aspects of managing "knowledge workers." The manager's role in planning, organizing, leading and controlling. Managing design and new products development, materials and inventory. Organizational styles, structures and policies. Human resource management for individuals and groups. (Cannot be taken for graduation credit by students who have taken BUS 215 or BUS 317.)
Prerequisite: Junior standing or instructor consent.

BUS 308 Principles of International Business
(3-0-3)
Introduction to various aspects of international business covering cultural, political, legal and economic environments, international trade theory, foreign investment strategies, negotiations, diplomacy, country selection and evaluation and human resource management.

BUS 309 Introduction to Tourism
(3-0-3)
Introduction to tourism industry. Topics include major components of tourism, service suppliers, travel, transportation, accommodations, food and beverage, attractions, entertainment, destinations and impacts of tourism on society.

BUS 314 Entrepreneurship
(3-0-3)
Identification and assessment of the critical factors that lead to a successful start-up. Focus on entrepreneurship, forms of ownership, researching a potential start-up business, profitability, financial needs and competition. Completion of a business plan for a proposed enterprise.
Prerequisites: BUS 215, or BUS 304, or BUS 317; ACC 203 and BUS 223.

BUS 316 Total Quality in Health Care
(3-0-3)
The health care quality management process, contemporary issues and trends involved with quality control, organization structures, policies, human factors and teamwork.
Prerequisite: Junior standing.

BUS 317 Health Care Management
(3-0-3)
The health care manager's role in planning, organizing, leading and controlling. Special emphasis on the unique and complex issues involved in health care management. Organizational structures. Strategic and operational planning. Health care finance and budgeting. The future of management. (Cannot be taken for graduation credit by students who have taken BUS 215 or BUS 304.)
Prerequisite: Junior standing or instructor consent.

BUS 318 Consumer Behavior
(3-0-3)

BUS 319 Advertising Management
(3-0-3)
Study of integrated marketing communication strategies and tools to develop successful branding. Evaluation and selection of advertising media. Preparation of layout and copy for effective advertising performance.
Prerequisite: BUS 223 or BUS 337.

BUS 325 Finance Management
(3-0-3)
Basic issues and methodology of financial management. Emphasis placed on working capital management, sources of short-term and long-term funds and optimal capitalization of the firm.
Prerequisites: BUS 215; ACC 203.

BUS 326 Sales and Sales Management
(3-0-3)
Principles, techniques and problems of personal selling. Analysis of customer needs. Customer contact, sales presentation, closing and post-sale services. Practice in sales preparation and demonstration and management of the salesforce.
Prerequisite: BUS 223.

BUS 328 Health Care Accounting and Finance
(3-0-3)
General principles and application of managerial accounting in health care organizations. Theory and procedure in gathering cost data and their use in analyzing and controlling operation costs: job-order and process-cost systems. Revenue cycle, sources and systems analysis of variance, cost effectiveness and managerial reporting are examined.
Prerequisite: ACC 201.

BUS 331 Personal Finance
(3-0-3)
Introduction to the basic principles of personal financial planning and budgeting. Includes banking services, consumer credit, asset purchases, insurance and the fundamentals of investments and retirement planning.

BUS 335 Small Business Management
(3-0-3)
General management principles and business strategies for establishing and maintaining a small business. Using a business plan to develop operational strategies for starting a business and staying in business.
Prerequisites: BUS 215, BUS 304, or BUS 317; BUS 314.

BUS 337 Principles of Health Care Marketing
(3-0-3)
Fundamentals of health care marketing covering strategy, planning process, assessment, marketing actions, branding and evaluation.

BUS 345 Fraud Examination
(3-0-3)
Study of fraud and fraud investigative techniques. Topics include nature of fraud, types of fraud, fraud prevention, detection and investigation methods and legal follow-up procedures.

BUS 347 Geography of Travel and Tourism
(3-0-3)
Study of those destinations around the world that are most important to travelers including the World Heritage sites. Topics include fundamentals of geography, both physical and cultural, and major tourism destinations.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 349</td>
<td>Human Resource Management</td>
<td>(3-0-3)</td>
<td>The employment process, management development and training, wage and salary administration, preventive labor programs, safety, affirmative action, worker's compensation, grievance handling, job evaluation and job description analysis, employee services and programs.</td>
<td>BUS 215 or BUS 304 or BUS 317.</td>
</tr>
<tr>
<td>BUS 350</td>
<td>Hospitality Management</td>
<td>(3-0-3)</td>
<td>Study of management principles in the tourism and hospitality industry. Topics include managing growth and change in the hospitality industry, major functional areas in hotels and restaurants and the economic aspects of the industry.</td>
<td></td>
</tr>
<tr>
<td>BUS 358</td>
<td>Marketing for Hospitality and Tourism</td>
<td>(3-0-3)</td>
<td>Study of marketing principles as they apply to the tourism and hospitality industry. Topics include marketing in strategic planning, the marketing environment, marketing information systems and marketing research, consumer buying behavior, market segmentation, product pricing, distribution channels and internet marketing.</td>
<td>BUS 399 Special Topics: Marketing Tourism.</td>
</tr>
<tr>
<td>BUS 385</td>
<td>Ecotourism</td>
<td>(3-0-3)</td>
<td>Study of sustainability principles as they apply to the tourism and hospitality industry. Topics include the ecotourism environment, the economic, sociological and cultural impacts of ecotourism, ecotourism as a business and a world survey of ecotourism sites.</td>
<td>WRI 121.</td>
</tr>
<tr>
<td>BUS 387</td>
<td>International Human Resource Management</td>
<td>(3-0-3)</td>
<td>In-depth review of human resource selection, training for international assignments, managing the expatriate manager, compensation packages, repatriation training, women and dual-career couples, conflicting interests of parent company and host country and managing joint ventures.</td>
<td>BUS 308.</td>
</tr>
<tr>
<td>BUS 390</td>
<td>Labor Relations</td>
<td>(3-0-3)</td>
<td>Industrial labor concepts including a study of wages, unemployment, organized labor, collective bargaining, union policies and methods, labor problems of employers and methods of seeking industrial peace.</td>
<td>BUS 215 or instructor consent.</td>
</tr>
<tr>
<td>BUS 399</td>
<td>Marketing Special Topics</td>
<td>(3-0-3)</td>
<td>Concentrated areas of marketing will be taught on a rotating basis: business to business, hospitality and travel, entertainment and sports, high tech, direct marketing and public relations.</td>
<td>BUS 223.</td>
</tr>
<tr>
<td>BUS 405</td>
<td>Reading and Conference</td>
<td>Hours</td>
<td>Examination of leadership characteristics, models, roles and theories. Societal issues for leaders in the current global business environment. Understanding personal leadership style.</td>
<td>BUS 215, BUS 304, or BUS 317; senior standing or instructor's consent.</td>
</tr>
<tr>
<td>BUS 415</td>
<td>Environmental Regulation</td>
<td>(3-0-3)</td>
<td>Legislation and enforcement activities involving natural and industrial environments. Conservation laws, land use and planning, responsibilities of regulatory agencies, review of current legislative actions and judicial decisions.</td>
<td>BIO 112 or BUS 226.</td>
</tr>
<tr>
<td>BUS 416</td>
<td>Environmental Management</td>
<td>(3-0-3)</td>
<td>Review of contemporary management issues and business practices related to land use management and planning, ecological planning, environmental quality engineering and control and natural resource economics.</td>
<td>BUS 415 and ECO 201N or BIO 112.</td>
</tr>
<tr>
<td>BUS 420</td>
<td>Applied Management Internship</td>
<td>(0-9-3)</td>
<td>This course provides credit for an approved internship related to the student’s program. Students work in a supervised setting where they receive training to develop career related skills while applying college learned theory.</td>
<td>Senior standing and approval from senior project advisor.</td>
</tr>
<tr>
<td>BUS 434</td>
<td>Global Marketing</td>
<td>(3-0-3)</td>
<td>Comprehensive study in financial, legal, social, religious and cultural influences on marketing in foreign countries. The problems and challenges of global marketing and how to utilize them. Includes international challenges of Internet marketing.</td>
<td>BUS 223.</td>
</tr>
<tr>
<td>BUS 441</td>
<td>Leadership</td>
<td>(3-0-3)</td>
<td>Examination of leadership characteristics, models, roles and theories. Societal issues for leaders in the current global business environment. Understanding personal leadership style.</td>
<td>BUS 215, BUS 304, or BUS 317; senior standing or instructor's consent.</td>
</tr>
<tr>
<td>BUS 447</td>
<td>Controversial Issues in Management</td>
<td>(3-0-3)</td>
<td>Examination of the many controversial issues in management such as social responsibility, whistle blowing, outsourcing, drug testing, Affirmative Action and so on. Students will study opposing views and arguments from a variety of viewpoints. Discussion and debate develops critical thinking skills.</td>
<td>BUS 215, or BUS 304, or BUS 317 and junior standing.</td>
</tr>
<tr>
<td>BUS 457</td>
<td>Business Research Methods II</td>
<td>(3-0-3)</td>
<td>Emphasizes quantitative elements of research methods including presenting and describing information, drawing conclusions about populations using sample information; and improving business processes.</td>
<td>BUS 215 and MATH 361.</td>
</tr>
</tbody>
</table>
BUS 467 Service Management
(3-0-3)
The nature of service and service encounters, strategy and competitiveness. Design of service systems. Facilities location, design and layout. Service quality and continuous improvement. Prerequisite: BUS 215 or BUS 317.

BUS 473 Marketing Plan Development
(3-0-3)
Development of an in-depth marketing plan for a local community business. All aspects of the plan will be covered in detail. Prerequisites: BUS 223, BUS 319.

BUS 478 Cases in Strategy and Policy
(3-0-3)
Comprehensive study and analysis of businesses and/or case studies. Evaluation of strategic and operational decision making. Performance analysis in areas of finance, marketing and social performance. Prerequisites: ACC 325, WRI 227, senior standing.

BUS 496, BUS 497 Senior Project
(1-6-3)
Senior students plan, develop and complete a project for a client or an independent research project. Includes topics dealing with client contact, time management and estimation, task definition, privacy and client confidentiality. Periodic progress reports and presentations required. Instructor functions as a consultant. Prerequisites: ACC 325; WRI 227. Corequisite: BUS 356.

(CHE) Chemistry

CHE 101 Elementary Chemistry
(3-0-3)
A brief presentation of introductory chemical concepts including atomic structure, the chemical equation, the behavior of gases, the chemistry of solution and acid-base chemistry. For students with good knowledge of algebra. Pre- or corequisite: MATH 100. Corequisite: CHE 104 (lab).

CHE 102 Elementary Chemistry
(3-0-3)
A continuation of CHE 101 with emphasis on organic chemistry. The role of organic chemistry in life and industrial processes is discussed. Prerequisite: CHE 101 or instructor consent. Corequisite: CHE 105 (lab).

CHE 103 Elementary Chemistry
(3-0-3)
A continuation of CHE 102 with emphasis on biochemistry. The organic chemistry of biochemicals including proteins, carbohydrates and fats, as well as nucleic acids is discussed. Basic elements of metabolism are also explored. Prerequisite: CHE 102 or instructor consent. Corequisite: CHE 106 (lab).

CHE 104 Elementary Chemistry Laboratory
(0-3-1)
Lab accompanying class content in CHE 101. Corequisite: CHE 101.

CHE 105 Elementary Chemistry Laboratory
(0-3-1)
Lab accompanying class content in CHE 102. Corequisite: CHE 102.

CHE 106 Elementary Chemistry Laboratory
(0-3-1)
Lab accompanying class content in CHE 103. Corequisite: CHE 103.

CHE 107, CHE 207, CHE 307, CHE 407 Seminar
(Hours to be arranged each term.)

CHE 201 General Chemistry
(3-0-3)
Atomic and molecular structure, chemical bonding, chemical and physical properties, introduction to stoichiometry and thermochemistry are presented. Prerequisite: High school chemistry or CHE 101 equivalent. Pre- or corequisite: MATH 111. Corequisite: CHE 204 (lab).

CHE 202 General Chemistry
(3-0-3)
A continuation of CHE 201. This course discusses the behavior of gases, liquids and solids, the properties of solutions, chemical kinetics and an introduction to chemical equilibrium. Prerequisites: CHE 201 and CHE 204 (lab). Corequisite: CHE 205 (lab).

CHE 203 General Chemistry
(3-0-3)
A continuation of CHE 202. This course continues the discussion of chemical equilibrium and its applications in aqueous solutions including pH, buffers, solubility and complexation. Also included are oxidation-reduction processes and electrochemistry, thermodynamics and an introduction to nuclear chemistry. Prerequisites: CHE 202 and CHE 205 (lab). Corequisite: CHE 206 (lab).

CHE 204 General Chemistry Laboratory
(0-3-1)
Lab accompanying class content in CHE 201. Corequisite: CHE 201.

CHE 205 General Chemistry Laboratory
(0-3-1)

CHE 206 General Chemistry Laboratory
(0-3-1)
Lab accompanying class content in CHE 203. Corequisite: CHE 203.

CHE 210 Clinical Pharmacology
(3-0-3)
The drug action of selected pharmaceutical. Emphasis is placed on drug interactions, routes of administration and effects on body systems. Prerequisites: BIO 231, BIO 232.

CHE 221 General Chemistry
(4-3-5)
Components of matter, atomic and molecular structure, chemical bonding, stoichiometry, major classes of chemical reactions, gases and kinetic-molecular theory, thermo-chemistry and quantum theory and atomic structure. Prerequisite: CHE 101, high school chemistry or equivalent. Corequisite: MATH 111.

CHE 222 General Chemistry
(4-3-5)
A continuation of CHE 221. Models of chemical bonding, shape of molecules, theories of covalent bonding, liquids and solids, properties of mixtures, bonding and reactivity and chemical kinetics. Prerequisite: CHE 221.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP - Humanities Performance SS – Social Science. For more information see page 38.
CHE 223 General Chemistry
(4-3-5)
Prerequisite: CHE 222.

CHE 235 Streamwater Chemistry and Sampling
(1-6-3)
Introduction to water quality and automated stream water sampling. Laboratories focus on multiparameter water quality data sonde technologies. Calibration, operational use, discrete measurements and automated data logging are discussed. Field exercises include project planning, data validation, safety and constraint assessments.
Prerequisite: CHE 201 or CHE 221 or instructor consent.

CHE 260 Electrochemistry for Renewable Energy Applications
(3-3-4)
Development of electrochemistry concepts, including thermodynamics, reaction kinetics, charge transport and mass transport. Topics are presented in the context of fuel cells, electrolysis, electroplating and batteries. Also discussed, the chemistry of hydrogen; its properties, production, storage and transportation.
Prerequisite: CHE 202 or CHE 222.

CHE 315 Environmental Chemistry and Toxicology
(3-0-3)
Mechanisms and toxicological effects of chemical reactions in water, soil and air. Global and regional concerns about atmospheric and marine contaminants, thermal pollution, pesticide and heavy metal disposal, radioisotope properties and effects of pollutants on living organisms. Organic nomenclature and selected biochemistry principles.
Prerequisite: CHE 331 or instructor consent.

CHE 325 Soil Science
(3-3-4)
Prerequisite: CHE 202 or instructor consent.

CHE 331 Organic Chemistry I
(3-3-4)
The structures and reactions of carbon compounds with emphasis on thermodynamics, reaction pathways and spectroscopy.
Prerequisite: CHE 223.

CHE 332 Organic Chemistry II
(3-3-4)
Organic stereochemistry with emphasis on biologically important molecules.
Prerequisite: CHE 331.

CHE 333 Organic Chemistry III
(3-3-4)
Free radical chemistry, pharmaceutical chemistry and the mechanistic aspects of enzymatic catalysis.
Prerequisite: CHE 332.

CHE 341 Instrumental Methods/Data Acquisition I
(3-3-4)
An introduction to the theory and practical applications of computer/instrument interfacing and data acquisition techniques and software. Includes a survey of optical measurement techniques.
Prerequisite: CHE 235.
Corequisite: MIS 115 or CST 116 or instructor consent.

CHE 342 Instrumental Methods/Data Acquisition II
(3-3-4)
Principles and techniques of instrumental methods and data analysis. Methods appropriate for chemical analysis including spectroscopy, gas chromatography, potentiometric and flame photometric methods. Emphasis on sample preparation, instrumental response, sensitivity and accuracy.
Prerequisite: CHE 341.

CHE 345 Corrosion Chemistry
(3-0-3)
A survey of the chemical kinetics and thermodynamics of corrosion, the various types of corrosion, inhibition of corrosion and industrial applications.
Prerequisites: CHE 101, CHE 201, PHY 202 or instructor consent.

CHE 346 Corrosion Chemistry Laboratory
(0-3-1)
Laboratory accompanying CHE 345. Providing practical experience with electrochemical equipment used to measure corrosion processes.
Corequisite: CHE 345.

CHE 350 Clinical Pharmacology for Nuclear Medicine
(3-0-3)
Principles of pharmacokinetics, pharmacodynamics and a survey of the major drug families developing familiarity with commonly prescribed drugs, their clinical application, mechanism of action and side effects. Emphasis is on drugs of importance to nuclear medicine and the common radiopharmaceuticals.
Prerequisite: BIO 233 or BIO 333 or instructor consent.

CHE 360 Clinical Pharmacology for the Health Professions
(3-0-3)
Principles of pharmacokinetics, pharmacodynamics and a survey of the major drug families developing familiarity with the most commonly prescribed drugs, their clinical application, mechanism of action and side effects.
Prerequisite: BIO 233 or BIO 333 or instructor consent.

CHE 450 Biochemistry I
(3-3-4)
Molecular and cellular biochemistry with emphasis on DNA structure, replication, the process and cellular regulation of RNA transcription, and analyzing and constructing DNA.
Prerequisites: BIO 213, CHE 332.

CHE 451 Biochemistry II
(3-3-4)
Molecular biochemistry with emphasis on protein conformation and function, mechanisms of enzyme action and control, and energy production via glycolysis.
Prerequisite: CHE 450.

CHE 452 Biochemistry III
(3-3-4)
Molecular and cellular biochemistry with emphasis on cell membranes, lipid metabolism, aerobic energy metabolism, anabolism and the role of biochemistry in cellular signaling processes.
Prerequisite: CHE 451.

CHE 455 Water Quality Technology
(2-3-3)
Examination of water quality relative to surface, groundwater and industrial sources. Focus on laboratory and field procedures for detection, surveillance and abatement of water pollution.
Prerequisites: ENV 325 and CHE 342, or instructor consent.
CHE 465 Fate and Transport of Pollutants
(3-3-4)
Mass balance. The use of equilibrium and chemical kinetics in the modeling of pollutant transport in water, soil and air. Mixing zone analysis, the use of Darcy’s law, flow nets and the Gaussian Plume approximation. Discussion, development and use of selected modeling scenarios.
Prerequisites: CHE 223, MATH 252.

(CIV) Civil Engineering

CIV 107, CIV 207, CIV 307, CIV 407 Seminar
(Hours to be arranged each term.)

CIV 112 Engineering Graphics
(0-6-2)
Graphical communication in civil engineering using computer aided drafting software. Emphasis on 2D with introduction to 3D methodologies, using industry standard software. Includes development of drawings related to civil engineering projects such as roads, subdivisions and buildings, development of scaled plots and reading of engineering drawings.

CIV 201 Sustainable Civil Engineering I
(0-3-1)
This first of two courses will provide an awareness of sustainability concepts and an appreciation of key social, economic and environmental issues and processes relevant to civil engineering. Sustainable design practices in each civil engineering sub-discipline will be studied.
Prerequisite: ENGR 102 or instructor consent.

CIV 202 Sustainable Civil Engineering II
(0-3-1)
This second of two courses will provide an awareness of sustainability concepts and an appreciation of key social, economic and environmental issues and processes relevant to civil engineering. Sustainable design practices in each civil engineering sub-discipline will be studied.
Prerequisite: CIV 201 on instructor consent.

CIV 223 Elementary Properties of Materials
(3-3-4)
Study of the engineering properties of soil and concrete. Development of proper field and laboratory testing methods for classifying and evaluating soil characteristics and principles of quality control. Testing and mixing concrete based on aggregate properties determined in the laboratory.
Prerequisite: ENGR 101 with grade “C” or better or instructor consent.

CIV 299 Independent Studies
(Hours to be arranged each term.)

CIV 315 Principles of Environmental Engineering
(3-0-3)
Introduction to environmental engineering principles, fundamental concepts and supporting calculations. Physical, chemical and biological elements of the natural environment. Environmental impacts of anthropogenic activities. Control and pollution prevention technologies. Legal and regulatory framework governing environmental management.
Prerequisite: CIV 201 or CIV 221 with grade “C” or better.

CIV 317 Economics for Civil Engineers
(3-3-0)
Economic analysis and evaluation of civil engineering projects. Economic evaluation from the perspective of the consulting engineer and contractor will be explored. Basic economic concepts such as equivalent worth, depreciation, taxes and statistical risk will be covered.
Pre- or corequisite: MATH 361.
Prerequisite: CIV 201 with grade “C” or better.

CIV 321 Soil Mechanics and Foundations
(3-3-4)
Soil permeability and seepage, effective stress, consolidation, shear strength, lateral earth pressure, soil bearing capacity, retaining walls, shallow footings and deep foundations including piles.
Prerequisites: CIV 223 and ENGR 213 both with grade “C” or better.

CIV 328 Structural Analysis
(3-3-4)
Prerequisites: ENGR 213, MATH 254N, PHY 222 all with grade “C” or better.

CIV 331 Reinforced Concrete Design
(3-3-4)
Design and behavior of reinforced concrete members including beams, slabs, footings, retaining walls and shear walls with applications to simple structures. Lab includes construction and destructive testing of reinforced concrete beams.
Prerequisite: CIV 328 with grade “C” or better.

CIV 344 Structural Steel Design
(4-0-4)
Design and behavior of structural steel members, including beams, tension members, columns and connections with applications to simple frames and structures. Computer applications also introduced.
Prerequisite: CIV 328 with grade “C” or better.

CIV 358 Project Management
(3-0-3)
Basic project management principles and practices for engineering projects. Topics include basic management principles, contracts, delivery methods, bidding, procurement, costs, estimating, planning, scheduling, controlling and allocation of resources. Gantt charts, CPM and PERT discussed. Concepts applied using currently available computer software.
Prerequisites: CIV 317, MATH 254N and PHY 222 all with grade “C” or better.

CIV 361 Closed Conduit Design
(3-3-4)
Prerequisites: ENGR 231, MATH 221, MATH 254N and PHY 222 all with grade “C” or better.

CIV 362 Hydrology and Surface Water Management
(3-3-4)
Study of the hydrologic cycle, measurement of rainfall, runoff and streamflow. Curve fitting, hydrographic analysis, statistical analyses of extreme flows, flood routing and storage capacity. Runoff modeling and design of hydrologic structures and systems.
Prerequisites: CIV 361 and MATH 361 both with grade “C” or better.

CIV 364 Introduction to Water and Wastewater Treatment Systems
(3-3-4)
Water and wastewater characteristics, chemistry, quality and supply. Engineering design and water demand projection. Theory of individual treatment processes, design guidelines for components for water/wastewater treatment. Lab covers the water and wastewater quality analysis and unit operations/processes in treatment systems.
Prerequisites: CHE 201 or CHE 221 and CIV 315 with grade “C” or better.
CIV 469 Treatment Wetlands
(3-0-3)
Treatment wetland features; biological, chemical and physical properties. Planning, design and performance assessment principles for municipal, agricultural and stormwater treatment wetlands. Considers vegetation and microbiology, aerobic and anaerobic biogeochemistry, hydraulics and treatment efficiencies. Local case studies. Prerequisite: CHE 202, ENGR 231.

CIV 371 Introduction to Transportation Engineering
(3-0-3)
Introduction to the design, planning, operation, management and maintenance of transportation systems. Principles for planning multi-modal transportation systems, layout of roadways, traffic flow modeling and capacity analysis. Prerequisites: CIV 112, ENGR 211, GME 161, MATH 254N and PHY 222 all with grade “C” or better.

CIV 375 Highway Engineering
(3-0-4)
Hot mixed asphalt materials testing and mixture design. Methods of manufacture, transport and placement of rigid and flexible pavements. Structural design of rigid and flexible pavements. Pavement rehabilitation and management. Prerequisites: CIV 223, ENGR 213, MATH 254N and PHY 222 all with grade “C” or better.

CIV 401/COM 401 Civil Engineering Project I
(4-6-6)
First term of a two-term sequence integrating civil engineering design, group dynamics and technical communications. Students receive three credit hours in civil engineering design (CIV 401) and three credit hours in communication for general education (COM 401). Students will be introduced to a major civil engineering project, prepare a professional engineering proposal and function effectively in engineering design teams. Formal written proposal and oral presentation of the proposal are required. Prerequisite: Civil Engineering advisor consent.

CIV 402/COM 402 Civil Engineering Project II
(4-6-6)
Second term of a two-term sequence. Students receive three credit hours in civil engineering design (CIV 402) and three credit hours in communication for general education (COM 402). Student teams will perform work as defined in the fall term proposal. Consultations with faculty, students and clients ensure work progresses toward stated goals. Term culminates with final design recommendations presented in a written report and oral presentation. Plans and specifications and a construction cost estimate will also be completed. Prerequisite: CIV 401/COM 401 both with grade “C” or better.

CIV 408 Workshop
(Hours to be arranged each term.)

CIV 410 Basic Dynamics of Structures
(3-0-3)
Analysis of single degree of freedom structural systems to harmonic and general dynamic loading. Free vibrating and forced vibration of multiple degree of freedom systems, model superposition, earthquake engineering, current IBC methods. Prerequisite: CIV 328 with grade “C” or better.

CIV 415 Civil Design Software Applications
(1-3-2)
Advanced applications of civil engineering design software will be presented and applied to current year senior design project. Design components will include, at a minimum, site topography, layout of project roadways and parking lots, and layout of water, waste water and storm water lines. Prerequisite: CIV 112 with grade “C” or better. Corequisite: CIV 401/COM 401.

CIV 416 Structural Design for Lateral Loads
(3-0-3)
Wind and seismic forces on buildings according to the Uniform Building Code. Lateral force resisting systems for buildings. Software applications. Prerequisite: CIV 328 with grade “C” or better.

CIV 418 Structural Matrix Analysis
(3-0-3)
Static analysis of structures using flexibility and stiffness methods with strong emphasis on computer models and solutions for practical analysis problems. Prerequisite: CIV 328 with grade “C” or better.

CIV 435 Timber Design
(3-0-3)
Analysis and design of simple (determinate) timber beams, columns, trusses and connections using dimensioned lumber, plywood and laminated members. Computer solutions introduced. Prerequisite: CIV 328 with grade “C” or better.

CIV 445 Design of Reinforced Masonry Structures
(3-0-3)
Analysis and design of masonry beams, walls and columns using computer solutions with emphasis on lateral design considerations. Prerequisite: CIV 328 with grade “C” or better.

CIV 464 Water and Wastewater Treatment Plant Design
(3-0-3)
Planning, design, construction and operation of water and wastewater treatment systems. Prepare preliminary engineering design report. Work in design teams and present process designs for a potable water treatment plant and a municipal wastewater treatment plant. Prerequisites: CHE 202, CIV 315, CIV 364, and ENGR 231, all with grade “C” or better.

CIV 466 Solid and Hazardous Waste Management
(3-0-3)
Sources and characteristics of solid and hazardous wastes. Laws, regulations, methods and issues associated with the collection, handling, tracking, transportation, treatment and disposal of solid/hazardous wastes. Material recovery and recycling, waste to energy, composting, design of landfills and environmental considerations. Prerequisite: CIV 315 with grade “C” or better.

CIV 467 Groundwater
(3-0-3)
Offers an introduction to the physical properties and principles of groundwater. Topics will include groundwater and the hydrologic cycle, fundamental fluid flow laws, groundwater resource evaluation, and groundwater contamination. Prerequisites: BIO 327, MATH 251 for non-majors or CIV 321 for Civil Engineering majors.

CIV 468 Environmental River Mechanics
(2-3-3)
River response to watershed modification and infrastructure, including introduction to fluvial geomorphology, sediment transport and stream restoration. Management of waterways and floodplains. Prerequisites: CIV 361, CIV 362 both with grade “C” or better.
CIV 574 Advanced Pavement Design
(2-3-3)
Application of planning and engineering design principles to the design and analysis of steel girder bridges, concrete girder bridges, and pre-stressed concrete slab structures. Emphasis is placed on bridge design, traffic analysis software, and current research literature investigations into bridge design. Prerequisites: CIV 371, MATH 361 both with grade “C” or better.

CIV 499 Independent Studies
(Hours to be arranged each term.)

CIV 531 Open-Channel Hydraulics
(3-4-3)
Application of basic principles of hydraulics to open-channel flow. Theory and analysis of critical, uniform, unsteady, and gradually and rapidly varied flow. Flow characteristics in natural and constructed channels. Computer modeling of open-channel flow systems. Floodplain delineation methods. Prerequisite: CIV 361 with grade “C” or better.

CIV 551 Bridge Design
(3-3-4)
An introduction to the design and analysis of short and medium-span highway bridge superstructures including reinforced concrete slab bridges, steel deck girder bridges, and pre-stressed concrete girder bridges. Analysis and rating using nationally recognized software.

CIV 573 Transportation and Land Development
(3-0-3)
Study of interactions between land development activity and the transportation network. Application of planning and engineering design techniques to manage the impacts of development upon the transportation system.

CIV 574 Advanced Pavement Design
(2-3-3)

(CLS) Clinical Laboratory Science

CLS 100 Introduction to Clinical Laboratory Science
(1-3-2)
Orientation to the theory and practice of all aspects of the clinical laboratory science profession. The history of clinical laboratory science, professional organizations and career opportunities are discussed.

CLS 107, CLS 207, CLS 307, CLS 407 Seminar
(Hours to be arranged each term.)

CLS 406 Biometry
(2)
Problem solving related to clinical laboratory determinations to include: solution preparation, systems of measurement, dilutions, factors, graphs and standard curves, and generation of laboratory results from raw data. Descriptive and inferential statistics related to clinical laboratory science and quality control to include: measures of central tendency, probability distributions, hypothesis testing, confidence intervals, Z-scores, t-tests, chi-square, correlation and regression analysis, and ANOVA.

CLS 410 Clinical Microbiology I
(2)
Lecture course studying the major bacterial organisms pathogenic for man. Includes culture methods, morphological characteristics, isolation methods, and identification of these organisms. Discussion of the bacterial structures and processes, genetic determinants, normal flora, host-parasite relationships, sterilization techniques, epidemiological methods, antimicrobics, and principles of laboratory diagnosis of infectious diseases.

CLS 411 Clinical Microbiology II
(2)
Lecture course studying the major spirochetes, mycobacteria, actinomycetes, chlamydia, rickettsia, fungi, and viral organisms pathogenic for man. Includes discussion of bacteria causing zoonotic diseases. Includes discussion of skin and wound infections, bone and joint infections, eye, ear, and sinus infections, dental and respiratory infections, enteric infections and food poisoning, urinary tract infections, central nervous system infections, intravascular infections, bacteremia, endotoxemia, infections of the fetus and newborn, sexually transmitted diseases, infections in the immunocompromised patient, nosocomial infections, and hospital infection control. Prerequisite: CLS 410

CLS 412 Pathophysiology
(2)
Lecture course reviewing processes that underlie many different disease states and health deviations. The study of the most common disease processes in humans and their correlation with laboratory findings are explored.

CLS 415 Clinical Chemistry I
(6)
The theory, practical application and technical performance of chemical procedures. Fundamentals of quantitative chemical analysis in the determination of endogenous and exogenous substances in body fluids such as blood, urine, spinal fluid, amniotic fluid and ascites. Emphasis areas will encompass amino acids, proteins, carbohydrates, lipo-proteins, lipids, enzymes, renal and liver functions analytes, GI function related analytes, electrolytes, trace elements, hemoglobin and porphyrins, and hormones, bone metabolism, nutrition, pregnancy and fetal development analytes, and geriatric considerations.

CLS 416 Clinical Chemistry II
(2)
The theory, practical application and technical performance of chemical procedures. Fundamentals of quantitative chemical analysis in the determination of endogenous and exogenous substances in body fluids such as blood, urine, spinal fluid, amniotic fluid and ascites. Emphasis areas will encompass therapeutic drug monitoring, toxicology, and method evaluation. Prerequisite: CLS 415.

CLS 419 Immunohematology
(2)
Emphasis on theory and laboratory techniques used in blood banking including blood typing, major blood group antigens and antibodies including their role in transfusion medicine, cross matching, and antibody identification. Current practices in blood donation, component therapy, and medical-legal aspects are also covered.

CLS 420 Clinical Immunology
(3)
Fundamentals of humoral and cellular immunity, to include innate and adaptive immunity, organs and tissues of the immune system, principles of immune activation, immunoglobulin and receptor biochemistry, immuno-genetics, cytokines, the complement system, white blood cell populations, and phagocytic mechanisms. Clinical applications to include protective immunity, immuno-deficiency conditions, inflammation, immune mediated diseases, neoplasms of the immune system, transplantation, and cancer immunology. An overview of immunoassay and serology testing formats.
CLS 422 Theories of Molecular Methods
(2-0-2)
Provides overview of molecular diagnostics principles, covering tests used for diagnostic purposes, and molecular techniques to include: nucleic acid structure and function, introduction to nucleic acid extraction, purification, and quantitation and amplification methods to include PCR, gene mutation and DNA technology.
Prerequisites: CLS 415, CLS 447, CLS 448.

CLS 423 Molecular Techniques
(1-0-1)
Applies the concept of molecular biology to identify the genetic markers and mutations applicable to genetic diseases.
Prerequisite: CLS 422.

CLS 440 Practicum: Specimen Collection
(1)
Provides theory, demonstrations and practice of medical laboratory techniques pertaining to the science of specimen collection or phlebotomy.

CLS 441 Practicum: Instrumentation
(1)
Principles and applications of the instruments in use in the modern clinical laboratory. Basic principles of instrument operation for methods of detection, with emphasis on maintenance and safety. Instrumentation formats to include: spectrophotometry, electrochemistry, osmometry, electrophoresis, particle analysis, and measurement of radioactive decay.

CLS 442 Practicum: Hematology
(6)
Normal development and function of blood cells; mechanisms of hemostasis; basic pathophysiology of hematological and hemostasis disorders; laboratory procedures pertaining to hematology and hemostrasis; microscopic examination of blood films; and correlation and interpretation of laboratory data for disease states.

CLS 443 Practicum: Transfusion Medicine
(4)
Coordinated lecture and laboratory practice. The principles of immunohematology as applied to Transfusion Medicine with special emphasis upon blood groups and types, techniques demonstrating antigen-antibody reactions; donor collection, processing, storage and hazards of transfusions, blood components and quality control are covered.

CLS 444 Practicum: Microbiology
(6)
Emphasis on clinical laboratory techniques. Methods include discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results. Includes study of the culture, morphological characteristics, serological methods, isolation and identification of bacterial organisms. Includes safety, specimen collection, microscopic methods, and anti-microbial susceptibility. Organisms include normal and pathogenic gram positive cocci, gram negative cocci, gram positive bacilli, gram negative bacilli, spirochetes, anaerobes, and related organisms with emphasis on organisms seen in a clinical laboratory. Includes discussion of chlamydia, mycoplasma, and rickettsiae.

CLS 445 Practicum: Mycology
(2)
Emphasis on clinical laboratory techniques. Methods include microscopy, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results. Includes study of the culture and morphological characteristics of normal and pathogenic fungi and yeast with emphasis on organisms seen in a clinical laboratory.

CLS 446 Practicum: Parasitology
(2)
Emphasis on clinical laboratory techniques. Methods include microscopy, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results. Includes study of normal and pathogenic parasitic organisms with emphasis on organisms seen in a clinical laboratory.

CLS 447 Practicum: Chemistry
(6)
Principles of chemical analysis, quality control, laboratory utilization, and safety. Hands-on exercises, demonstrations, and computer tutorials illustrating chemical analysis and data evaluation in a clinical chemistry laboratory. Discussion of case studies using problem-solving methods to analyze and interpret relevant chemical analysis data.
Prerequisite: CLS 441
Co-requisite: CLS 415

CLS 448 Practicum: Immunology/ Infectious Serology
(2)
Techniques in immunologic and serologic procedures. Hands-on exercises, demonstrations, and computer tutorials illustrating immunoassay analysis and data evaluation in a clinical immunology and infectious serology laboratory. Discussion of immunoassay systems to include spectrophotometry, nephelometry, turbidimetry, fluorescence, electrochemiluminescence, radioassay, and flow cytometry, instruction and practice of testing methods and interpretation to include precipitation, agglutination, receptor-ligand, complement, microscopy, electrophoresis, and cell-mediated assays. Discussion of case studies using problem-solving methods to analyze and interpret relevant immunology and serology data.
Prerequisites: CLS 420, CLS 441.

CLS 449 Practicum: Urinalysis
(2)
Study of urine with emphasis on urinalysis techniques, renal function, physical examination, chemical examination, microscopic examination, renal disease, and metabolic disorders. Methods include microscopy, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results.

CLS 452 Practicum: Advanced Hematology Techniques
(2)
Microscopic examination of blood films and body fluids; instrumentation methodologies for analyzing cellular components of blood; analysis and interpretation of disease states.
Prerequisite: Completion of CLS 442 with grade “C” or better.

CLS 453 Practicum: Advanced Transfusion Medicine Techniques
(2)
Provides directed study, review and advanced problem solving and critical thinking related to Transfusion Medicine. May include, but not be limited to, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving and interpretation of results.
Prerequisite: Completion of CLS 443 with grade “C” or better.
CLS 454 Practicum: Advanced Microbiology Techniques
(2)
Advanced techniques and review of microbiological organisms. Includes study of bacterial, fungal, and parasitic organisms and associated techniques. Methods include microscopy, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results.
Prerequisites: CLS 410, CLS 411, CLS 444, CLS 445, and CLS 446.

CLS 457 Practicum: Advanced Chemistry/Immunology Techniques
(2)
Directed study, review, and demonstration of advanced methods and instruments in use in clinical or research laboratories. These may include, but not be limited to tissue typing, molecular methods, automated systems, flow cytometry, and chromatographic methods.
Prerequisites: CLS 447, CLS 448.

CLS 459 Practicum: Advanced Urinalysis Technique
(1)
Advanced techniques and review of urinalysis methods. Includes microscopy, discussion, case histories, computer tutorials, hands-on exercises, demonstrations, problem solving, and interpretation of results.

CLS 462 Laboratory Management
(2)
Theory and practice of clinical laboratory management to include; laboratory regulatory considerations, financial management, laboratory operating and communication systems, safety procedures, project planning, procurement, principles and fundamentals of personnel management, quality assessment, ethical practice and educational methodology.

CLS 470 Clinical Laboratory Externship
(16)
Sixteen weeks of clinical laboratory experience at an OIT approved clinical site correlating knowledge and skills presented in lectures and labs. Designed for the development of skills necessary for entry into professional practice. Students work under the direct supervision of certified clinical laboratory scientists.
Prerequisite: Successful completion of all academic coursework in the Clinical Laboratory Science Program.

(COM) Communication

COM 104 Introduction to Communication
(3-0-3)
Introduces Communication Studies. Principles and applications developed in context of career exploration, interpersonal, group, organizational and technical communication. Includes history and structure of communication field, career paths, research skills and role of technology. Required for majors.

COM 105 Introduction to Communication Theory
(3-0-3)
Introduces basic theories and concepts in the Communication discipline. Acquaints students with major theories fundamental to communication research and to communication interactions including interpersonal, organizational, media and intercultural.
Prerequisite: COM 104.
Pre- or corequisite: WRI 122.

COM 106 Introduction to Communication Research
(3-0-3)
Introduces students to research in the communication discipline. Students find and analyze quantitative, qualitative and critical research. Introduces communication research as a process made up of methods, data-gathering, analysis and drawing conclusions.
Prerequisite: COM 105. Required for majors.

COM 107, COM 207, COM 307, COM 407 Seminar
(Hours to be arranged each term.)

COM 115 Introduction to Mass Communication
(3-0-3)
An introduction to mass media. Focus on the social, economic, and technological influences of the media, and increasing convergence of media and messages.

COM 205 Intercultural Communication
(3-0-3) C or H
Introduces basic theories and concepts of intercultural communication. Builds understanding and skills enabling students to analyze intercultural interactions and develop and practice effective communication strategies. (Satisfies general education requirements in Communication or Humanities.)

COM 215 Creativity in Communication
(3-0-3)
Define and learn how personal and group creativity can be enhanced. Study the lives of creative individuals in the arts, sciences, and industry. Individual and group exercises designed to enhance the creative process.

COM 216 Mastery of Grammar and Punctuation
(3-0-3)
Involves learning basic and advanced grammar and punctuation through the mastery of sentence diagramming.
Prerequisite: WRI 121 with grade “C” or better.

COM 225 Interpersonal Communication
(3-0-3) C
Introduction to interpersonal communication theory and practice. Students apply course concepts to analyze and practice dyadic communication to develop more effective work and personal relationships.

COM 226 Nonverbal Communication
(3-0-3)
Nonlinguistic aspects of human communication. Examines the relationships between nonverbal and verbal communication behavior and nonverbal communication skill. Topics include space, distance, environment, touch, gesture, facial expression and gaze as communication.
Prerequisites: COM 225, SPE 111.

COM 237 Introduction to Visual Communication
(3-0-3)
Theory and rhetoric of visual communication. Variety of perspectives including personal, historical, technical, ethical, cultural and critical. Emphasis on relationships between form and content, word and image, and role of visual communication in society.
Prerequisite: WRI 122.

COM 246 KTEC Radio Production
(3-0-3)
Study of technical and cultural aspects of radio. Through hands-on experience, students will learn how to create and edit sound tracks and learn techniques for creating radio presentations while applying rules of content and language.

COM 248 Digital Media Production
(2-3-3)
Study of the technical aspects of digital media design and production. Hands-on experience in creating and editing video and audio. Production of video and audio for specific contexts.
COM 255 Communication Ethics
(3-0-3)
Examines typical communication situations involving ethics. Methodologies for critically evaluating ethical situations. Reading, writing, and oral presentations. Prerequisite: WRI 122.

COM 256 Public Relations
(3-0-3)
Introduction to the history and practice of public relations. Emphasis on the practical accomplishment of public relations campaigns. Topics include internal and external audiences, brochures, press releases, internal documents, pitches, issue management, and project design and execution. Service learning course. Prerequisite: WRI 122.

COM 276 Democracy and Media
(3-0-3)
Provides an introduction to the ownership and structure of media, as well as media’s politics, objectives, and links to the corporate and national economy. Includes project analysis of media through the filters of ownership, sourcing, flak, advertising and ideology. Prerequisites: COM 115, WRI 122.

COM 301 Rhetorical Theory and Application
(3-0-3)
Theories of communication and application to personal, business and industrial settings. Focuses on the evolution of rhetoric. Covers rhetorical effects on individual, group and mass communication. Prerequisites: SPE 111, WRI 227, or appropriate experience.

COM 320 Advanced Intercultural Communication
(3-0-3) C or H
Builds on theories from COM 205. Focuses on analyzing intercultural interactions in specific work contexts, for example health care, education, social services, business and technology. (Satisfies general education requirements in Communication or Humanities.) Prerequisite: COM 205.

COM 326 Communication Research
(3-0-3)
Introduction to research methods and design. Design of both quantitative and qualitative research. Emphasis on communication based methodologies: focus groups, directed interviews, and ethnography. Includes a research project and written and oral research reports. Pre- or corequisite: WRI 227.

COM 345 Organizational Communication I
(3-0-3)
Introduction to the study of communication in organizations, including message movement, exchange and interpretation, identification of variables, roles and patterns influencing communication in organizations.

COM 346 Health Communication
(3-0-3)
Overview of interpersonal, social and cultural issues in health communication, including family interaction, roles of patients and caregivers, communication in health organizations and the role of media. Prerequisites: WRI 122 with “C” or better; COM 205 or equivalent.

COM 347 Negotiation and Conflict Resolution
(3-0-3) C
Theories and strategies for the conduct of conflict and negotiation across contexts. Topics include destructive conflict cycles, confronting and managing conflict, social and psychological aspects of conflict, conflict analysis, the causes of conflict, and promoting constructive conflict. Prerequisite: SPE 321, or instructor consent.

COM 348 Facilitation
(3-0-3)
Students lead small groups through deliberative processes including participatory decision making and conflict resolution. Provides theoretical and practical understanding of facilitation focusing on building skills in group leadership. Prerequisite: SPE 321.

COM 358 Communication and the Law
(3-0-3)
Issues involved in establishing legal parameters within which professional communicators work. Examining interpretations of the first amendment, balancing conflicting first amendment claims, libel, limits of a free press, prior restraint, licensing and regulation. Prerequisites: SPE 111, WRI 227.

COM 365 Electronic Communication and Society
(3-0-3)
Explores the Internet as a mediator of human communication and its effect on society. Examines intrapersonal/interpersonal communication, entertainment/workplace contexts, and the convergence of technology as a global village. Prerequisite: WRI 227.

COM 401/CIV 401 Civil Engineering Project I
(4-6-6) C
First term of a two-term sequence integrating civil engineering design, group dynamics and technical communications. Students receive three credit hours in civil engineering design (CIV 401) and three credit hours in communication for general education (COM 401). Students will be introduced to a major civil engineering project, prepare a professional engineering proposal and function effectively in engineering design teams. Formal written proposal and oral presentation of the proposal are required. Prerequisite: Civil Engineering advisor consent.

COM 402/CIV 402 Civil Engineering Project II
(4-6-6) C
Second term of a two-term sequence. Students receive three credit hours in civil engineering design (CIV 402) and three credit hours in communication for general education (COM 402). Student teams will perform work as defined in the fall term proposal. Consultations with faculty, students and clients ensure work progresses toward stated goals. Term culminates with final design recommendations presented in a written report and oral presentation. Plans and specifications and a construction cost estimate will also be completed. Prerequisite: COM 401/CIV 401 both with grade “C” or better.

COM 415 Developing Effective Multimedia-based Presentations
(3-0-3)
Interdisciplinary course introducing students to the tools and skills associated with designing, developing, presenting and disseminating state-of-the-art multimedia presentations. Hands-on experience with graphics, digital/audio video, animation and text. Prerequisites: CST 101 or equivalent, SPE 111 and WRI 227.

COM 420 Externship
(Variable to a total of 15 credits)
Students work in applied settings in their emphasis under the supervision of an on-site mentor. Regular contact with extern advisor. Written externship reports required. Prerequisite: Senior standing and permission of extern advisor.
COM 421 Senior Project I
(3-0-3)
First term of a three-term comprehensive sequence. Focus on developing a written proposal for a significant project in Communication Studies. Team projects permitted; interdisciplinary projects encouraged.
Prerequisite: Senior standing.

COM 422 Senior Project II
(3-0-3)
Second term of a three-term comprehensive sequence. Focus on organizing and conducting a significant project in Communication Studies.
Prerequisite: COM 421.

COM 423 Senior Project III
(3-0-3)
Third term of a three-term comprehensive sequence. Focus on completing and documenting a significant project in Communication Studies.
Prerequisite: COM 422.

COM 425 Mediation
(3-0-3)
Prepares students to mediate in public and private settings. Covers conflict management strategies, processes and issues including gender and cultural awareness.
Prerequisite: COM 225 or instructor consent.

COM 426 Mediation Practicum
(Variable Credit 1-3)
Mediation practice and observation with experienced mediators through the Klamath Mediation Center. Students will progress from observation, to co-mediation, and finally, mediation of real disputes. Builds on the theoretical insights and practice of COM 425.
Co- or prerequisite: COM 425.

COM 437 Communication Training and Development
(3-0-3)
Prepares students to facilitate communication skills workshops and differentiate between organizational structure and communication training needs. Topics include audience analysis, learning theory, curriculum design, presentation skills, classroom dynamics and assessment.
Prerequisite: SPE 321.

COM 445 Organizational Communication II
(3-0-3)
Examination of organizational communication systems and the design of communication audit procedures. Synoptic reports of findings and recommendations.
Prerequisite: COM 345 or instructor consent.

COM 446 Communication and Leadership
(3-0-3)
In-depth study of the relationship between communication and leadership within organizations and the development and application of communication competencies associated with effective leadership.
Prerequisite: SPE 321 or instructor permission.

(CST) Computer Systems Engineering Technology

CST 101 Introduction to Personal Computing
(3-3-4)
Computer concepts, terms and trends related to personal computers (microcomputers). Introduction to Windows/NT and other commonly used Windows application programs. Hands-on labs provide experience with applications, networks and the Internet using e-mail and the World Wide Web.

CST 102 Introduction to Computer Systems
(2-3-3)
Concepts, terms, and trends related to the computer engineering technology (hardware) and software engineering technology (software) curriculums. Includes discussions on fundamental aspects of the computer field. Laboratory component will introduce students to micro-computers, programming concepts and various computer engineering related software.
Prerequisite: CST 101.

CST 103, CST 104, CST 105 Introduction to Computer Systems I, II, III
(1-3-2) (0-3-1) (0-3-1)
Concepts, terms and trends related to computer engineering technology (hardware) and software engineering technology (software) curriculum. Includes discussions on fundamental aspects of the computer field. Laboratory component will introduce students to microcomputers, programming concepts and various computer engineering related software.

CST 107, CST 207, CST 307, CST 407 Seminar
(Hours to be arranged each term.)

CST 116 C++ Programming I
(3-3-4)
Computer concepts and problem solving methods using C++ programming language. Topics include: algorithms, simple data types, conditional and iterative structures, function definition, structured programming and documentation. Cannot be taken for graduation credit if student has completed MIS 116.
Pre- or corequisite: MATH 111.

CST 123 Topics in Computer Science
(3-0-3)
Overview of various software engineering subject areas. Topics include computer history, operating systems, networking, software engineering, databases, software careers, and various application areas. Also examines ethical and social issues raised by widespread use of computers.
Prerequisite: CST 126 with grade “C” or better.

CST 126 C++ Programming II
(3-3-4)
Solving complex problems using advanced features of the C++ language. Topics include function usage, pointer data type, dynamic memory allocation, string manipulation, and structure and union data types. Emphasis is on structured program design techniques. Cannot be taken for graduation credit if student has completed MIS 126.
Prerequisite: CST 116, with grade “C” or better.

CST 130 Computer Organization
(3-0-3)
Introduces computer elements, organization, and instruction sets, computer arithmetic, ALU, Registers, Datapath, memory and Control unit functions.
Prerequisite: CST 162 with grade “C” or better.

CST 131 Computer Architecture
(3-0-3)
Continuation of CST 130. Topics include main memory, cache, virtual memory, memory management, secondary storage, networks, operating system functions, and pipelining.
Prerequisite: CST 130 with grade “C” or better.

Courses with the following notation fulfill the appropriate general education requirements:

C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science.
For more information see page 38.
CST 133 Digital Electronics II – Sequential Logic with HDL
(3-3-4)
Introduction to Sequential Logic, Latches, Flip/Flops, Timers, Counters/Registers, HDL Implementation, PLD HW Implementation, Finite State Machine Design/Analysis, Logic Testing, MPU System, Memory Devices, DC Parameters and Timing Analysis. Laboratory integral to the class. Students must register for a laboratory section.
Prerequisite: EE 131 or CST 162, both with grade “C” or better.

CST 136 Object-Oriented Programming with C++
(3-3-4)
A study of object oriented programming with C++. Beginning and intermediate concepts are covered including classes, objects, member functions, overloading, inheritance, polymorphism, templates, and virtual functions. This course prepares students with a strong C background for upper-division coursework using C++. Cannot be taken for graduation credit if student has completed MIS 136.
Prerequisite: CST 126, with grade “C” or better.

CST 141 Computer Programming (FORTRAN)
(3-3-4)
Computer concepts and problem solving methods using the FORTRAN programming language. Topics include: algorithms, simple data types, conditional and iterative structures, subprograms, structured programming and documentation.
Prerequisite: MATH 111.

CST 162 Introduction to Digital Logic
(3-3-4)
Introduction to combinational logic. Includes introduction to DC circuits, number systems, Boolean algebra, logic gates, Muxes, Decoders, Adders, Subtractors. Logic design using a hardware description language. Laboratory integral to the class.
Pre- or corequisite: MATH 100.

CST 204 Introduction to Microcontrollers
(3-3-4)
An introduction to microcontrollers (uC). Signals and data flow within simple systems. Introduction to instruction set, software development tools and I/O techniques, both programmed and interrupt-driven. Experiments using uC plus external circuits in applications.
Prerequisites: CST 131, CST 250, each with grade “C” or better, or instructor consent.

CST 211 Data Structures
(3-3-4)
Discussion of efficient methods of data representation such as stacks, queues, linked-lists, binary trees, B-trees. Emphasis is on data representation and algorithm analysis.
Prerequisite: CST 136 with grade “C” or better.

CST 223 Concepts of Programming Languages
(2-3-3)
Study of principles and fundamental concepts characterizing high-level programming languages, including history and survey of programming paradigms, syntax and semantic rules, data types, control flow and data abstraction.
Prerequisite: CST 126 with grade “C” or better.

CST 229 Introduction to Grammars
(3-0-3)
The concepts involving alphabet words and languages will be discussed. Related topics in automata and regular expression will be explored. Emphasis is on context free grammars, parse tree and parsing techniques.
Prerequisites: CST 211, and CST 223 or CST 231.

CST 231 Computer Design with Programmable Logic
(3-0-3)
This class introduces students to structured digital design techniques using programmable logic devices. The course investigates concepts, terminology and techniques used to design and implement programmable logic devices. Both software tools (synthesis tools) and programmable hardware applications will be provided to demonstrate the capabilities of programmable devices.
Prerequisite: CST 133 with grade “C” or better.
Corequisite: CST 232.

CST 232 Computer Design with Programmable Logic Laboratory
(0-3-1)
Laboratory experiments to support CST 231. Experiments with programmable logic devices including simulation.
Prerequisite: CST 133 with grade “C” or better.
Corequisite: CST 231.

CST 236 Software Systems Testing
(3-3-4)
Focus on software testing and reliably monitoring the health of software development. Topics include test driven development, story driven tests, unit tests, Web tests, load tests, static code analysis and dynamic code analysis.
Prerequisite: CST 136 with grade “C” or better.

CST 238 Graphical User Interface Programming
(3-3-4)
Introduction to Windows based programming. Topics covered include a review of the standard user interface elements of Windows, the Windows Application Program Interface (API), message processing, writing Windows Procedures, working with text, using Windows resources, creating modal and modeless dialog boxes, and using the Graphics Device Interface.
Prerequisites: CST 211 with grade “C” or better and SPE 111.

CST 240 UNIX
(2-3-3)
Students will study the structure of the UNIX/Linux Operating System, including: file structure, input/output processing, commands and utilities, shell configuration, communications, and script programming languages. Emphasis will be placed on lab work done within the UNIX/Linux environment.
Prerequisite: CST 126 with grade “C” or better.

CST 250 Computer Assembly Language
(3-3-4)
Concepts of assembly language programming applied to a modern computer; data and instruction formats, address generation; data definition, storage allocation and program control statements; sub-routine library; CPU instruction set; control records; and writing of sub-routines.
Prerequisites: CST 126 and CST 130 with grade “C” or better.

CST 260 Advanced Assembly Language Programming
(3-3-4)
Advanced applications of assembly language programming such as: interrupt handling, writing drivers involving bus interface devices, graphic applications, and interfacing with high level languages. Software projects will be developed on Intel 80XXX family of processors.
Prerequisite: CST 250, with grade “C” or better, or instructor consent.

CST 262 Digital Design Using HDL
(3-3-4)
Advanced digital circuit design. HDL is used in designing sequential logic circuits such as registers, counters, and synchronous finite state machines. Basic digital circuit design and analysis with semiconductor devices is also covered. Laboratory is integral to the class.
Prerequisites: CST 162 with grade “C” or better, EET 101, EET 102.
CST 295 Individual Studies
(Hours to be arranged each term.)

CST 298 Reading and Conference
(Hours to be arranged each term.)

CST 299 Laboratory Practice
(Hours to be arranged each term.)

CST 311 Advanced Data Structures and Algorithm Analysis
(3-1-3)
Discussion and implementation of advanced data structures like K-way trees and sets. Analysis techniques of computer algorithms with respect to their time and space complexity. Emphasis will be placed on implementation of algorithms and analyzing their performance in various environments.
Prerequisite: CST 211.

CST 313 Computer Software Techniques
(3-0-3)
Lectures are divided between data structures and operating systems. Data structures section involves data representation, B-trees, graphs, and files. Operating systems section involves process, memory, and file management as related to UNIX. Cannot be taken for graduation credit if student has completed MIS 315.
Prerequisite: CST 126 with grade "C" or better.

CST 315 Embedded Sensor Interfacing and I/O
(3-3-4)
Introduction to Data Acquisition Systems. Sampling Theory, ADC, DAC, Signal Conditioning, Filters, Amplifiers, Noise, Transducers and sensors, including Bio-sensors. Sensor Interfacing, Smart Sensors, and Busses. Lab integral to course.
Prerequisites: CST 204, EE 223.

CST 316 Software Process Management
(3-3-4)
In this first term of a three-term sequence, students will work in teams to gather requirements, model, analyze, develop and integrate an n-tiered architecture software product. Students will learn about project management, software development lifecycle tools and processes, and quality assurance processes.
Prerequisite: CST 211 with grade "C" or better.

CST 320 Compiler Methods
(3-3-4)
Basic concepts of compiler design and operation. Topics include lexical and syntactical analysis, parsing, translation, data flow analysis and code generation, and implementation of a small compiler.
Prerequisite: CST 229.

CST 321 Introduction to Microprocessors
(3-6-5)
Hardware and assembly level software needed to interface a microprocessor to I/O ports, memory and interrupt sources. Topics include bus controller design, timing analysis, programmed I/O and interrupts. Extensive lab provides experience with system design, test and debugging using the 80386DX microprocessor.
Prerequisites: CST 204 and CST 231, with grade "C" or better, or instructor consent.

CST 324 Database Systems and Design
(3-3-4)
An overview of Data Base Management Systems including requirements analysis methodology for data base design, conceptual DB design methodology including formulation of entity-relationship models, review of query language characteristics, and a comparison of commonly available DBMS.
Prerequisite: CST 211 with grade "C" or better.

CST 326, CST 336 Software Design and Implementation I, II
(3-3-4)
In this second and third terms of a three-term sequence, students will work in teams to gather requirements, model, analyze, develop and integrate an n-tiered architecture software product. Students will learn about project management, software development lifecycle tools and processes, and quality assurance processes.
Prerequisites: CST 326: CST 276, CST 316 both with grade "C" or better; CST 328, CST 324.
Prerequisites: CST 336: CST 236, CST 326 both with grade "C" or better.

CST 328 Computer Graphics
(2-3-3)
Advanced algorithms and techniques are presented, including: 3-D modeling and rendering, perspective projection, hidden line/surface removal, curve/surface modeling and various lighting models. The OpenGL library will be used extensively.
Prerequisite: CST 238 or instructor consent.

CST 331 Microprocessor Peripheral Interfaces
(3-6-5)
Extension of concepts covered in CST 321 including additional peripheral devices to expand the microprocessor's capabilities and to create a complete system. Introduces additional I/O techniques including Interrupt driven I/O and DMA. Extensive lab provides continued experience with system design, test and debugging techniques.
Prerequisite: CST 321 or instructor consent.

CST 334 Project Proposal
(1-0-1)
Description of senior project; time management techniques; task assignment; development of in-depth senior project proposal and preparation of formal senior project. Includes use of PC-based planning.
Corequisite: CST 336 or CST 373.

CST 335 I/O Device Interfacing Techniques
(3-3-4)
Application of opto-couplers, peripheral drivers, A/D converters, and operational amplifiers to microprocessor/microcontroller based applications. Survey of transducer theory and available devices. An embedded system is used as a development platform in laboratory experiments.
Prerequisites: CST 204, EE 223, or instructor consent.

CST 337 Embedded System Architecture
(3-3-4)
Architectural elements of embedded systems – microprocessor, memory, I/O ports, interrupt controller, buffers; interface protocol and timing; external interfaces; external busses including USB, PCI and Ethernet. I/O methods. Configuration, programming, testing and debugging of embedded systems. Embedded system expansion.
Includes lab.
Prerequisite: CST 204 with grade "C" or better.
CST 338 Computer Modeling and Simulation
(3-0-3)
Modeling and simulation of discrete and continuous systems. Discrete time and discrete event simulation models will be discussed and developed. Formal model development and model evaluation will be discussed.
Prerequisites: CST 126, CST 211, MATH 465.

CST 340 Advanced UNIX
(3-0-3)
Advanced facets of the UNIX operating system will be explored. Topics of study include: interprocess communication, programming, system administration. Students will use OIT computers operating under UNIX.
Prerequisite: CST 240.

CST 344 Intermediate Computer Architecture
(3-0-3)
Register level design of a computer system, including the processor and memory structures. Cache and virtual memory. Includes analysis of both CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer) architectures.
Prerequisite: CST 204.

CST 345 Hardware/Software Co-Design
(3-3-4)
Co-design of hardware and software systems. Methods used in the development of embedded systems consisting of tightly coupled hardware and software components.
Prerequisites: CST 204 and CST 211 with grade "C" or better.

CST 346 .NET Programming in C#
(2-3-3)
Essentials of programming using the C# language. It emphasizes C# programming structure, syntax, design, and implementation essentials, as well as a brief overview of the .NET framework. Creating Windows Forms and accessing ADO.NET are also examined.
Prerequisite: CST 211 or CST 313.

CST 347 Real-Time Embedded Operating Systems
(3-3-4)
Prerequisites: CST 211, CST 240, both with grade "C" or better.

CST 350 Introduction to VLSI Design
(2-3-3)
An introduction to the various aspects of Very Large Scale Integration circuits. Includes modern design techniques using CAD/CAE software tools. Design using Standard Cell techniques, discussion of full custom design and VLSI testing concepts. Demonstrations are included to supplement lectures. The course will include laboratory experience.
Prerequisites: CST 231, CST 232, EE 321 or instructor consent.

CST 351 Advanced PLD Circuits
(2-3-3)
Study of complex PLDs (CPLDs) and other more advanced PLD architectures and related applications. Laboratory includes design capture, synthesis, placement and routing tools to implement several designs.
Prerequisites: CST 231, CST 232.

CST 352 Operating Systems
(3-3-4)
Issues in Operating Systems Design. Topics include: processes, threads and fibers, privilege modes, preemptive multitasking, process state machine, scheduling paradigms, system calls/traps, shared resources and synchronization primitives, memory management schemes/virtual memory, deadlock detection, handling, and avoidance, I/O management.
Prerequisites: CST 211, CST 240 both with grade "C" or better.

CST 356 Web Design and Development
(2-3-3)
Basic components of Web development which include aspects of design as well as current development technologies. Development technologies include, but are not limited to, HTML/XHTML, JavaScript, and CSS. Other technologies discussed may include Java Applets, CGI programming, ASP.NET and PHP.
Prerequisite: CST 211 or CST 313.

CST 371, CST 372, CST 373 Embedded Systems Development I, II, III
371 (3-3-4), 372 (2-3-3), 373 (1-3-2)
A three-term sequence covering design, implementation, test and documentation techniques used for embedded computer systems. Each student is required to work on and complete a project as a member of a team. The entire sequence must be completed in three consecutive terms.
Prerequisite: CST 204 or instructor consent.
Prerequisite: CST 371 for CST 372, CST 372 for CST 373.
Corequisite: CST 335 for CST 371.

CST 390, CST 490 Co-op Field Practice
(Variable Credit)
An approved work program related to the student's field of specialization for a continuous three-month or six-month period. The employer and the type, level, and difficulty of the particular job must be approved by the student's engineering technology department prior to the employment period. A written comprehensive report of each season's activity must be submitted during the following term of residence.
Prerequisites: Associate degree and two terms of residence.

CST 405 Directed Study
(3-0-3)
Advanced study under the guidance of faculty. Topics and learning objectives arranged between students and instructor. Students will meet with instructor weekly to discuss progress and provide evidence of their performance.
Prerequisite: Junior standing in CSET and instructor consent.

CST 408 Workshop
(Hours to be arranged each term.)

CST 412, CST 422, CST 432 Senior Development Project
412 and 422 (2-5-3), 432 (1-3-2)
A three-term sequence giving the student major responsibility for planning and carrying out a computer-oriented project. Individual creativity will be encouraged by allowing the student to select an appropriate project.
Prerequisite: CST 336 or CST 373.

CST 415 Computer Networks
(3-3-4)
Current issues in computer networks and distributed systems. Topics include network protocols, interface standards, and transmissions mode. Network layers detailing Internet Protocol Suite and correlations with 7 layer abstract communication model. Routing and WAN Architectures.
Prerequisite: CST 336 or CST 373 with grade "C" or better.

CST 417 Embedded Networking
(3-3-4)
Prerequisite: CST 373.
CST 418 Data Communications and Networks
(3-0-3)
Provides students with an introduction to data communications and computer networks. Students acquire knowledge of communications components and their use in implementing a network. Emphasis is on the practical aspects of network configuration, operations, and detection, isolation and correction of problems.
Prerequisites: CST 204, EE 321.

CST 420 Effective C++ and STL
(2-3-3)
Emphasis is on techniques to apply the C++ language and library effectively toward the implementation of object-oriented systems. Specific ways to improve design and program will be covered as well as purpose and use of the C++ Standard Library.
Prerequisite: CST 320 or instructor consent.

CST 423 Advanced Business Systems Programming
(3-0-3)
Emphasis is on structured analysis, design and programming, interactive programming, use of utilities/libraries, and integration of a high level language with a DBMS.
Prerequisite: Junior standing in CSET.

CST 425 Advanced Networks and Telecommunications
(3-0-3)
Detailed analysis of communications networks, including telephony, wide area, and local area implementations. Emphasis will be placed on the design and management of complex networks. Opportunity will be provided to work with existing networks.
Prerequisite: CST 415.

CST 426 Introduction to Artificial Intelligence
(3-0-3)
Concepts and techniques of AI with considerable use of the LISP interpreter. Includes discussion of “search” methods, knowledge representation, natural language processing, models of cognition, vision, and “The Blocks World.”

CST 435 Microprogramming
(3-0-3)
The concepts and methods involved in programming the computer’s control unit. Coverage includes a review of computer organization, microprogram operations such as floating point arithmetic, translator/simulator development, and emulation techniques.
Prerequisite: Software Engineering Technology senior standing, or instructor consent.

CST 436 Robotics
(3-0-3)
Robot models in the abstract and as practical laboratory problems. Models will be constructed using LISP and the student will be encouraged to design and build at least “an arm and hand” in the “Blocks World” as a laboratory assignment. Additional studies of applications-oriented AI research in other fields such as chemistry, medicine, and education.

CST 440 Seminars in Information Systems
(3-0-3)
Advanced studies in areas related to current developments and trends in computer systems. Topics include examining emerging technologies, ethics, security, privacy, productivity improvement methodologies and tools, computer system reviews and audits, and professional development.
Prerequisite: Senior standing in CSET.

CST 441 Logic Synthesis with VHDL
(2-3-3)
This course will show students how to use the hardware description language, VHDL, with hierarchical design techniques to manage a complex design. In this process, students will create a design using the VHDL modeling tools, simulate the design using advanced simulation techniques, synthesize and test the design. Laboratory integral with the course.
Prerequisite: CST 351 or instructor consent.

CST 442 Advanced Computer Architecture
(3-0-3)
Advanced concepts in computer architectures including pipelined, superpipelined, superscalar, and dynamically pipelined processor architectures, Parallel processors, Multiprocessors, Cache and Coherence.
Prerequisite: CST 344 or instructor consent.

CST 445 Advanced Microprocessors and Applications
(3-0-3-4)
This class examines the architecture of the Motorola 680X0 microprocessor family. The course investigates advanced design techniques used in developing interfaces to the 680X0 microprocessor family, along with the use of coprocessors and special device controllers. Advanced design concepts in both software and hardware will be examined.
Prerequisite: CST 331 or instructor consent.

CST 451 ASIC Design using FPGAs
(3-0-3-4)
FPGA senior project design specifications; presentation of the project in a design review to peers; application of formal hardware/software design techniques when designing with FPGAs; and verification of FPGAs.
Prerequisite: CST 441 or instructor consent.

CST 455 System On a Chip Design
(3-0-3)
Prerequisites: CST 345, CST 373.

CST 456 Embedded System Testing
(3-0-3)
Prerequisites: CST 136, CST 204, CST 231.

CST 461 Advanced Topics in VLSI Design
(2-3-3)
Conclusion of a three-course sequence in Very Large Scale Integration design. This course focuses on testing methodology, especially boundary scan. In addition, an alternative synthesis tool is introduced. Current issues in VLSI design are discussed. Laboratory experiments form an essential part of the course.
Prerequisite: CST 441.

CST 462 Real-Time Operating Systems
(2-3-3)
Topics in real-time operating systems analysis and design. Hard versus soft real-time systems. Scheduling paradigms and algorithms. Analysis of systems and processes. Real-time system modeling and time prediction.
Prerequisite: CST 352 with grade “C” or better.

CST 464 RISC-Based Microprocessor Systems
(3-0-3)
RISC architecture and applications. Includes i960 microprocessor features, instruction set, and i960 support software. Laboratory focus on applications.
Prerequisites: CST 331, CST 344.
CST 465 Web Development with ASP.NET
(2-3-3)
Dynamic Web site creation and development strategies using ASP.NET are discussed and practiced. Focus on the importance of databases in the creation of a dynamic Web site is heavily emphasized. Pre- or corequisites: CST 324 and CST 365 or instructor consent.

CST 466 Embedded System Security
(3-0-3)
Fundamental theories and applications of cryptography relevant to computer and embedded system security. Prerequisites: CST 126, MATH 112.

(DH) Dental Hygiene

DH 100 Introduction to Dental Hygiene
(1-3-2)
Orientation to the theory and practice of all aspects of the dental hygiene profession. The history of dental hygiene, professional organization and career opportunities are discussed. Hands-on activities involving basic dental hygiene skills. Opportunities to experience normal oral anatomy. Prerequisite: DH 100.

DH 101 Introduction to Dental Hygiene II
(0-3-1)
Hands-on activities involving the procedures and skills learned in DH 100. Students will practice basic dental hygiene skills. Opportunities to experience normal oral anatomy. Prerequisite: DH 100.

DH 107, DH 207, DH 307, DH 407 Seminar
(Hours to be arranged each term.)
Review, discussion, evaluation, and problem solving of the students’ clinical experience.

DH 221, DH 222, DH 223 Dental Hygiene Clinical Practice and Seminar I, II, III
(221-F)(2-6-4)(222-W)(2-6-4)(223-S)(1-6-3)
Sequential courses designed to provide clinical skills essential for the practice of dental hygiene. Skill development of patient appraisal, basic instrumentation, and individualized preventive care emphasized. Special emphasis on children up to 12 years old. Prerequisite: For DH 221–Admission to Dental Hygiene Program. Prerequisite: For DH 222–DH 221. Prerequisite: For DH 223–DH 222 and CHE 360.

DH 226 Head and Neck Anatomy
(2-0-2)
Head and neck anatomy correlated with clinical considerations for the dental hygienist. Anatomical nomenclature, primary and permanent dentitions, skeletal system, muscular system, head and neck structures, vascular system, nervous system, lymphatics, fascia and spaces, and spread of dental infection. Prerequisite: Admission in to the Dental Hygiene Program.

DH 237 Oral Histology and Embryology
(2-0-2)
Oral histology and embryology correlated with clinical considerations for the dental hygienist. Development periods, development of oral tissues and head and neck structures and histology of hard and soft tissues of the teeth and associated structures. Prerequisite: DH 226.

DH 240 Prevention I
(3-0-3)
Cariology, remineralization, fluorides, xerostomia, oral physiotherapy aids, plaque and calculus. Begin discussions about healthcare for the provider as a part of holistic healthcare. Prerequisite: Admission to the Dental Hygiene Program. Corequisite: DH 221.

DH 241 Prevention II
(3-0-3)
Psychological theories pertaining to patient care, including motivational interviewing and patient communication techniques. Healthcare for the provider is continued to include but not be limited to computerized dietary analysis and dietary counseling techniques and wellness goals for the provider. Prerequisite: DH 240.

DH 242 Prevention III
(3-0-3)
Preventive needs of infants through sixth grade. Sealants, early childhood caries, occlusion and nutrition, and management of this age group are considered. Healthcare for the provider is continued. Prerequisite: DH 241.

DH 244 General and Oral Pathology
(3-0-3)
Introduction to general pathology and common oral pathologies. Cell pathology, inflammation, immunity, neoplasia, traumatic lesions, inflammatory lesions, oral diseases with autoimmune components, and neoplasia. Descriptive terminology and differential diagnosis will be introduced. Prerequisite: DH 237.

DH 252 Oral Radiology I
(2-3-3)
Theoretical background and practical application of dental radiography. Exposure techniques, processing, mounting, and evaluation of dental radiographs; physical principles of production; clinical use of X-radiation; and radiation safety procedures.

DH 253 Oral Radiology II
(2-0-2)
Specialized techniques for children, special needs patients, extra-oral procedures, occlusal projections, localization techniques, radiographic detection and interpretation of potential pathology. Prerequisite: DH 244.

DH 254 Introduction to Periodontology
(1-0-1)
Introduction to periodontology with emphasis on etiology and pathogenesis of periodontal disease, disease classification, and assessment procedures. Prerequisite: DH 244.

DH 267 Emergency Procedures
(2-1-3)
Prevention, preparation, and management of emergency situations common in the dental environment. Individual and team practice in carrying out emergency procedures. Prerequisite: DH 244.

DH 275 Dental Ethics
(1-0-1)
Professional Ethics and legal requirements of the profession. Prerequisite: Admission in to the Dental Hygiene Program.

DH 299 Laboratory Practice
(Hours to be arranged each term.)
Courses with the following notation fulfill the appropriate general education requirements:
C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science.
For more information see page 38.
DH 321, DH 322, DH 323 Dental Hygiene
Clinical Practice and Seminar IV, V, VI
(321-F)(2-6-4)(322-W)(1-6-3)(323-S)(1-12-5)
Continued development of dental hygiene
skills, ultrasonic and advanced instrumentation,
expanded functions and observation in specialty
practices.
Prerequisite: For DH 321–DH 223.
Prerequisite: For DH 322–DH 321.
Prerequisite: For DH 323–DH 322.

DH 340 Prevention IV
(2-1-3)
Recognition and promotion of positive oral
health habits for adolescents. Eating disorders,
orthodontics, tobacco cessation, and drug/alcohol
concerns and their effect on the oral cavity. Sports
guard use and fabrication. Mental and physical
healthcare for the provider.
Prerequisite: DH 242.

DH 341 Prevention V
(3-0-3)
Dental care for oral cancer patients. Examination
of different antimicrobials and their use.
The needs of geriatric patients and special needs
patients. Healthcare for the provider.
Prerequisite: DH 340.

DH 344 Advanced General and Oral
Pathology
(3-0-3)
Common general and oral pathologic conditions,
oral manifestations of systemic diseases, endo-
crine system disorders, autoimmune, bone, and
salivary gland diseases. Emphasis will be placed
on description, differential diagnosis, and treat-
ment planning appropriate for comprehensive
dental hygiene care.
Prerequisites: DH 244 and DH 366.

DH 351 Pain Management I
(1-3-2)
Coordinated lecture and laboratory practice in the
techniques of local anesthesia. Factors in selection
of local anesthetic.
Prerequisite: CHE 360 and DH 267.

DH 352 Pain Management II
(2-3-3)
Recognition of dental anxiety; behavioral man-
agement; nitrous oxide sedation techniques are
practiced. Health history evaluation and case
analysis.
Prerequisite: DH 351.

DH 354 Periodontology
(3-0-3)
Evidence-based approach for treatment of peri-
donatal disease including nonsurgical and surgical
treatment. Root anatomy relating to effective
instrument adaptation. Treatment planning for
patients with all types of classifications of peri-
donatal disease.
Prerequisite: DH 254.

DH 363 Dental Materials
(2-3-3)
General properties, composition and manipula-
tion of common dental materials. Expanded
functions including denture relines and amalgam
polishing are practiced.

DH 366 Dental Anatomy
(2-0-2)
In-depth study of crown and root morphology of
primary and permanent dentitions with tooth res-
oration considerations. The temporomandibular
joint and occlusion will also be studied.
Prerequisite: DH 226.

DH 370, DH 371, DH 372 International
Externship
(1-0-1)(1-0-1)(0-3-1)
Sequential courses preparing for and providing
dental hygiene care at an international site using
portable dental equipment. Cultural issues, team-
work, financing, needs assessment, goal setting
and delivery of program.
Prerequisites: For DH 370–DH 321 and DH
381.
Prerequisite: For DH 371–DH 370.
Prerequisite: For DH 372–DH 371.

DH 380 Community Dental Health I
(1-3-2)
Childhood education techniques provided and
implemented within the community. Systemic
fluoride and its controversial effects debated.
Teamwork skills.
Prerequisite: DH 241.
Corequisite: DH 242.

DH 381 Community Dental Health II
(1-3-2)
Needs assessments and budget developed along
with a project plan for a community oral health
project. Educating and working with adolescents.
Projects will be conducted in local schools. Team-
work techniques practiced.
Prerequisite: DH 380.

DH 382 Community Dental Health III
(1-3-2)
The ongoing community oral health project
will be implemented. Formative and summative
evaluations compared and utilized in project.
The dental hygienist’s role in managed care. The
various structures, ethics, and alternatives of
public health.
Prerequisite: DH 381.

DH 383 Community Dental Health IV
(0-3-1)
Conclusion, evaluation and future recommenda-
tions of community oral health project. Formal
written presentation of project. In-depth look
at geriatric clients and their needs. Students will
experience different settings in the local geriatric
community.
Prerequisite: DH 382.

DH 399 Laboratory Practice
(Hours to be arranged each term.)

DH 401 Overview of Advanced Dental
Hygiene
(3-0-3)
Introduction to the online degree completion
program. Career opportunities, roles of the dental
hygienist, and the different emphases within the
program are explored.

DH 421, DH 422, DH 423 Dental Hygiene
Clinical Practice and Seminar VII, VIII, IX
(421-SU)(2-6-4)(422-SU)(1-12-5)(423-W)(1-12-5)
Further refinement of clinical instrumentation
and assessment skills. Emphasis on individualized
care for patients with special needs. Variety of off
campus clinical practice settings experienced.
Prerequisite: For DH 421–DH 323.
Prerequisite: For DH 422–DH 421.
Prerequisite: For DH 423–DH 422.

DH 430 Dental Hygiene Board Review
(2-0-2)
Designed to help students prepare for their na-
tional board exam. Multiple-choice test-taking
skills are practiced. Mock tests simulating the
real exam are used.

DH 453 Current Issues in Dental Hygiene
(3-0-3)
Current topics and issues related to dental hygiene
practice are explored.
Prerequisite: Admission to BDHO program.
DH 454 Dental Practice Management
(3-0-3)
Profitability of the Dental Hygiene Department; practice models, office design; patient satisfaction; financing options for the patient. Technology’s impact on practice management.
Prerequisite: DH 323.

DH 455 Dental Hygiene Research
(3-0-3)
Students choose a topic, conduct library and clinical research and document results.
Prerequisites: DH 453, MATH 243 and admission to BDHO program.

DH 461, DH 462, DH 463 Restorative Dentistry I, II, III
(1-3-2)(1-3-2)(0-6-2)
Properties of restorative dental materials. Practical experience using restorative dental materials. Placement and finishing of amalgam and composite restoration on typodonts in Restorative Dentistry I and on patients in Restorative Dentistry II and III.
Prerequisite: For DH 461–DH 363.
Prerequisite: For DH 462–DH 461.
Prerequisite: For DH 463–DH 462.

DH 467 Restorative Functions Endorsement
(2-2-4)
This course fulfills the Oregon Board of Dentistry (OBD) requirements for the restorative endorsement for dental assistants and dental hygienists.
Prerequisite: AHED 450, DH 470.
Students analyze study data and document results.
Prerequisite: DH 476.

DH 495 Individual Studies
(Hours to be arranged each term.)
DH 499 Laboratory Practice
(Hours to be arranged each term.)

(DHE) Dental Hygiene, (Extended)
DHE 100 Introduction to Dental Hygiene I
(2-0-2)
Orientation to the theory and practice of all aspects of the dental hygiene profession. The history of dental hygiene, professional organization and career opportunities are discussed.

DHE 107, DHE 207, DHE 307 Seminar
(Hours to be arranged each term.)

DHE 205 Oral and Dental Anatomy
(3-3-4)
Integrated anatomy, histology, and physiology of the head and neck region. Crown anatomy, root morphology and tooth development as applied to clinical situations. Lecture is to be delivered online. The lab will be at the ODS College of Dental Sciences.

DHE 211 Principles of Dental Hygiene I
(2-0-2)
Sequential course providing theoretical background for the clinical practice of dental hygiene. Problem solving and critical thinking related to patient assessment and management. Communication skills emphasized.

DHE 221 Dental Hygiene Clinical Practice I
(0-9-3)
Sequential course designed to provide clinical skills essential for the practice of dental hygiene. Skill development in the areas of patient appraisal, basic instrumentation, and individualized preventive care emphasized.

DHE 222 Dental Hygiene Clinical Practice II
(0-12-4)
Sequential course providing theoretical background for the clinical practice of dental hygiene. Problem solving and critical thinking related to patient assessment and management. Communication skills emphasized.

DHE 233 Periodontology
(3-0-3)
First of a two-course sequence emphasizing periodontal diseases, their classifications, and the etiological factors involved. Preventive measures within the scope and responsibility of the dental hygienist are correlated with basic sciences and clinical aspects of periodontal diseases.
DHE 244 General and Oral Pathology (3-0-3)
Introduction to general pathology and common oral pathologies. Cell pathology, inflammation, immunity, neoplasia, traumatic lesions, inflammatory lesions and oral diseases with autoimmune components. Descriptive terminology and differential diagnoses will be introduced. Prerequisite: DHE 205.

DHE 252 Oral Radiology I (2-3-3)
Theoretical background and practical application for dental radiography. Exposure techniques, processing, mounting and evaluation of dental radiographs; physical principles of production; clinical use of X-radiation and radiation safety procedures.

DHE 253 Oral Radiology II (2-0-2)
Techniques for patients with special needs, extra-oral procedures, occlusal projections, radiographic detection and interpretation of potential pathology. Introduction to panoramic exposure techniques and images and refinement of techniques in exposure, processing and radiographic evaluation. Prerequisite: DHE 252.

DHE 261 Dental Health Education (3-0-3)
An application of the concepts of preventive dentistry. Course includes oral health instruction for the individual patient based on an understanding of the causes and means to control dental disease. Selection and evaluation of oral physiotherapy aids, patient education, and other materials will be investigated. Concept of effective patient communication and motivation will be emphasized.

DHE 275 Dental Ethics (2-0-2)
Professional ethics and legal requirements of the dental profession.

DHE 282 Medical and Dental Emergency Procedures (2-3-3)
Equipment, drugs, signs, symptoms and treatment of medical emergencies that may occur in dental offices. Individual and team practice in carrying out emergency procedures (pulse, respiration, blood pressure, IV setup, oxygen, cardiopulmonary resuscitation, etc.) in timed simulations.

DHE 299 Laboratory Practice (Hours to be arranged each term.)

DHE 311 Principles of Dental Hygiene IV (3-0-3)
Sequential course providing advanced theoretical background for the clinical practice of dental hygiene. Students will learn how to promote patient adherence to disease prevention and health maintenance using evidence-based strategies. Prerequisite: DHE 213.

DHE 312 Principles of Dental Hygiene V (3-0-3)
Sequential course providing advanced theoretical background for the clinical practice of dental hygiene. Problem solving and critical thinking related to clinical cases. Care of special needs populations emphasized. Prerequisite: DHE 311.

DHE 313 Principles of Dental Hygiene VI (4-0-4)
Sequential course providing advanced theoretical background for the clinical practice of dental hygiene. Problem solving and critical thinking related to clinical cases. Interviewing skills, career opportunities and alternative practice settings discussed. Community health programs evaluated. Prerequisite: DHE 312.

DHE 320 Dental Materials and Chairside Assisting (2-3-3)
A study of the general properties, composition and manipulation of common dental materials as well as practical application of these materials at the chairside utilizing the concepts of four-handed dentistry. Prerequisite: DHE 205.

DHE 321 Dental Hygiene Clinical Practice IV (0-12-4)
Sequential course designed for the development of skills necessary for entry into professional clinical practice. Expanded dental hygiene functions practiced. Variety of off-campus clinical practice settings experienced. Prerequisite: DHE 223.

DHE 322 Dental Hygiene Clinical Practice V (0-12-4)
Sequential course designed for the development of skills necessary for entry into professional clinical practice. Expanded dental hygiene functions practiced. Variety of off-campus clinical practice settings experienced. Prerequisite: DHE 321.

DHE 323 Dental Hygiene Clinical Practice VI (0-15-5)
Sequential course designed for the development of skills necessary for entry into professional clinical practice. Expanded dental hygiene functions practiced. Variety of off-campus clinical practice settings experienced. Prerequisite: DHE 322.

DHE 333 Periodontal Therapy (3-0-3)
Philosophy and theoretical background of advanced periodontal issues of all supportive structures are explored. Various periodontal surgery techniques are studied. Prerequisite: DHE 233.

DHE 344 Advanced General and Oral Pathology (3-0-3)
Common general and oral pathologic conditions, oral manifestations of systemic diseases, endocrine system disorders, autoimmune, bone and salivary gland diseases. Emphasis will be placed on description, differential diagnosis and treatment planning appropriate for comprehensive dental hygiene care. Prerequisite: DHE 244.

DHE 351 Dental Analgesia (2-3-3)
This course explores pain control methods, including local anesthesia and nitrous oxide oxygen analgesia. Health history evaluation, local and systemic complications, anesthetic solutions, and vasoconstrictors and drug interactions are discussed. Techniques of local anesthesia, including block and infiltration injections are practiced. Administration of nitrous oxide is also practiced. Prerequisites: DHE 205, DHE 282.

DHE 380 Oral Health Planning and Care I (2-3-3)
Major concepts of public health including epidemiology, prevention and financing are covered. A systematic approach to planning group oral health projects begins. Prerequisite: DHE 381.

DHE 381 Oral Health Planning and Care II (2-6-4)
Biosstatitics and careers in public health are explored. Community oral health projects are implemented and evaluated. Table clinics and portfolios that document components of projects are presented. Prerequisite: DHE 380.

DHE 399 Laboratory Practice (Hours to be arranged each term.)

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
(DMS) Diagnostic Medical Sonography

DMS 107, DMS 207, DMS 307, DMS 407 Seminar
(Hours to be arranged each term.)

DMS 223 Applications of Abdominal Sonography I
(3-0-3)
History of sonography. Orientation to patient history, abdominal cross-sectional anatomy, scanning and normal sonographic presentation.
Prerequisite: MIT 103 with grade “C” or better.

DMS 224 Applications of Abdominal Sonography II
(3-0-3)
Orientation to cross-sectional abdominal anatomy and pathology of organs and vessels. Procedures and techniques, including scanning.
Prerequisite: DMS 223 with grade “C” or better.

DMS 225 Applications of Abdominal Sonography III
(3-0-3)
Advanced abdominal scanning procedures and techniques. Emphasis on superficial structures invasive procedures and Doppler correlation, including scanning.
Prerequisites: DMS 224 and DMS 253 with grade “C” or better.

DMS 234 Pelvic Sonography
(3-0-3)
Orientation to male and female pelvic cross-sectional anatomy and pathology, differentiating between normal variations and abnormalities to include first trimester obstetrics and trans-vaginal scanning.
Prerequisites: DMS 224 and DMS 253 with grade “C” or better.

DMS 235 Diagnostic Medical Sonography Patient Care
(3-0-3)
Sonographic management and applications of cognitive, psychomotor, and interpersonal skills as they relate to the health care consumer. Patient assessment and communication, body mechanics, medical and surgical asepsis, medical emergencies, pharmacology and analysis of ethical and legal issues.
Prerequisite: DMS 223 with grade “C” or better.

DMS 252 Sophomore Laboratory I
(0-3-1)
Applied scanning of right upper quadrant anatomy stressing imaging planes. Gray scale instrumentation, system-optimization, preventive maintenance, and quality hard copy imaging. Prerequisite: Sophomore standing in the DMS program.
Corequisite: DMS 223.

DMS 253 Sophomore Laboratory II
(0-3-1)
Applied scanning of the remainder of the abdominal cavity stressing anatomy, standard imaging planes, Doppler correlation and hard copy quality. Imaging review of prior anatomical areas. Prerequisites: BIO 335, DMS 223, DMS 252 with grade “C” or better.
Corequisites: DMS 224, MIT 231.

DMS 254 Sophomore Laboratory III
(0-3-1)
DMS orientation to cross-sectional pelvic anatomy and pathology of the male and female pelvis. Procedures and techniques, including scanning.
Prerequisites: DMS 224 and DMS 253 both with grade “C” or better.
Corequisite: DMS 225.

DMS 315 Sonographic Superficial Structures
(3-0-3)
Survey of superficial imaging applications with emphasis on normal and abnormal musculoskeletal and breast sonography.
Prerequisite: DMS 234 with grade “C” or better.

DMS 316 Survey of Vascular Technology
(3-0-3)
Orientation to vascular physics, equipment, and colorflow imaging. Explanation of Doppler imaging in relation to vascular anatomy.
Prerequisite: DMS 234, DMS 235, and DMS 352 with grade “C” or better.

DMS 317 Survey of Adult Echocardiography
(3-0-3)
Survey of adult echocardiographic imaging applications with emphasis on parasternal, apical, subcostal and suprasternal 2-D views. Standard M-Mode measurements, Doppler and color Doppler. Common cardiac pathology. Prerequisite: DMS 352 with grade “C” or better.

DMS 342 Survey of Adult Echocardiography
(3-0-3)
Survey of adult echocardiographic imaging applications with emphasis on parasternal, apical, subcostal and suprasternal 2-D views. Standard M-Mode measurements, Doppler and color Doppler. Common cardiac pathology. Prerequisite: DMS 352 with grade “C” or better.

DMS 343 Fetal Echo, Neonatal, and Pediatric Sonography
(3-0-3)
Fetal cardiac development and normal anatomy. Fetal echocardiographic 2D views, M-Mode, Doppler and Color Doppler. Common fetal cardiac pathology and anomalies. Neonatal topics include hip, abdominal and neurological sonographic applications. General sonographic pediatric pathologies and anomalies will be discussed.
Prerequisites: DMS 342 and DMS 372 both with grade “C” or better.

DMS 352 Junior Laboratory I
(0-3-1)
Applied scanning of the male and female pelvis stressing anatomy, standard imaging planes and hard copy quality. MedSim and phantom scanning of pelvic, endovaginal and first trimester applications. Imaging review of prior anatomical areas.
Prerequisite: DMS 254 with grade “C” or better.

DMS 353 Junior Laboratory II
(0-3-1)
Applied scanning of normal first, second and third trimester stressing anatomy, standard imaging planes and image quality using the MedSim systems. Doppler examinations of the carotid and lower extremity systems. Imaging review of prior anatomical areas.
Prerequisite: DMS 352 with grade “C” or better.
Corequisites: DMS 316, DMS 371.

DMS 354 Junior Laboratory III
(0-3-1)
Applied scanning of abnormal first, second, and third trimester scanning on the MedSim systems stressing pathology and additional imaging requirements. Final competencies of all prior imaging areas stressing image quality.
Prerequisite: DMS 353 with grade “C” or better.
Corequisites: DMS 365, DMS 373.

DMS 365 Sonographic Pathology
(3-0-3)
Differential diagnosis and concepts of disease processes as applied to sonographic examination.
Prerequisite: Junior standing in DMS.

DMS 371 Obstetrical Sonography First Trimester
(3-0-3)
Introduction to first trimester obstetrical ultrasound procedures and techniques. Emphasis on normal and abnormal sonographic first trimester presentation.
Prerequisites: DMS 224, DMS 225 and DMS 234 with grade “C” or better.
DMS 372 Obstetrical Sonography Second/Third Trimester
(3-0-3)
Orientation to obstetrical scanning procedures and techniques. Emphasis on normal second and third trimester obstetrical anatomy.
Prerequisite: DMS 371 with grade “C” or better.

DMS 373 Obstetrical Pathology
(3-0-3)
Advanced obstetrical scanning of second and third trimester obstetrical patients with emphasis on pathology.
Prerequisite: DMS 372 with grade “C” or better.

DMS 388 Externship Preparation
(2-0-2)
Presentation of key concepts related to Diagnostic Medical Sonography externship and required inservices. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the clinical environment. Review and discussion of the DMS Externship Handbook.
Prerequisites: DMS 316, DMS 353 and DMS 371 with grade “C” or better.
Corequisites: DMS 365, DMS 373.

DMS 430 Diagnostic Medical Sonography Externship
(0-40-15)
All B.S. students must complete four terms (12 months) of clinical experience in sonography at an OIT approved clinical site. Students will work under the direct supervision of registered sonographers.
Prerequisites: All academic coursework in the Diagnostic Medical Sonography curriculum.

(ECHO)
Echocardiography

ECHO 107, ECHO 207, ECHO 307, ECHO 407 Seminar
(Hours to be arranged each term.)

ECHO 225 Cardiopulmonary Patient Management Practices
(2-3-3)
Current issues in the practice of echocardiography with emphasis on the technologist’s responsibilities to the patient, the patient’s family and the professions of echocardiography. Transporting critically ill patients and recognizing emergency situations.
Prerequisite: ECHO 231.

ECHO 227 Basic ECG Recognition and Testing
(3-0-3)
Basics of ECG testing, heart pressures, blood volume/physiology and the electrical conduction system. Focus on interpretation of ECG rhymes: normal ECG, ventricular hypertrophy, bundle branch block, AV block, myocardial ischemia, bradycardia, tachycardia, atrial fibrillation, ventricular fibrillation and irregular rhythms.

ECHO 231 Echocardiography I
(3-3-4)
An introduction to screening techniques and tomographic views according to the American Society of Echocardiography standards. B-mode image, pulsed and continuous wave Doppler, and color-flow imaging.
Prerequisite: ECHO 320.

ECHO 232 Echocardiography II
(3-3-4)
An intermediate level of instruction in scanning techniques and tomographic views according to the American Society of Echocardiography standards. Emphasis on cardiac pathology and the echocardiography evaluation.
Prerequisite: ECHO 231.

ECHO 233 Echocardiography III
(3-3-4)
An advanced level of instruction in scanning techniques and tomographic views according to the American Society of Echocardiography standards. Cardiac pathology, and advanced methods in echocardiography.
Prerequisite: ECHO 232.

ECHO 234 Echocardiography IV
(3-3-4)
An advanced level of instruction in scanning techniques and tomographic views according to the American Society of Echocardiography standards. Special topics including 3-D, 4-D, tissue Doppler, cardiac resynchronization and other technological advances.
Prerequisite: ECHO 333.

ECHO 365 Abdominal/Renal Testing
(3-3-4)
Abdominal vascular anatomy and common disease processes. Students will be asked to perform basic abdominal vascular tests following very specific protocols and interpretations.
Prerequisites: ECHO 325, ECHO 376.
Corequisites: ECHO 385, ECHO 388.

ECHO 376 Survey of Vascular Testing
(2-3-3)
Basic vascular pathophysiology in carotid, arterial, and venous testing. Waveform recognition, interpretation, and protocols for testing.
Prerequisite: ECHO 333.

ECHO 385 Echocardiography Laboratory Management
(3-0-3)
Focus on human resource skills as necessary to manage an echocardiography laboratory. Includes the interview process, hiring and firing, as well as employee performance evaluation. Other topics will include reimbursement, licensure, accreditation and other management issues.
Corequisite: ECHO 325.

ECHO 388 Externship Preparation
(2-0-2)
Presentation of key concepts related to Diagnostic Medical Sonography externship and required inservices. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the clinical environment. Review and discussion of the DMS Externship Handbook.
Prerequisites: DMS 316, DMS 353 and DMS 371 with grade “C” or better.
Corequisites: DMS 365, DMS 373.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science.
For more information see page 38.
Course Descriptions

ECH 388 Externship Preparation
(2-0-2)
Review and summarization of key concepts in Echocardiography. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the hospital environment or independent echo lab. Review and discussion of the Echocardiography Externship Handbook. Corequisite: ECHO 334.

ECH 420 Echocardiography Externship
(0-40-15)
Students work as registered professionals in the field and must complete nine months (three terms) of experience in Echocardiography. Prerequisite: Admission to Echocardiography Degree Completion Program.

ECH 420A Echocardiography Externship
(0-22-8)
Students work as registered professionals in the field. Patient echo exams with normal and abnormal stress tests, normal and abnormal wall motion. Case study presentation. Prerequisite: Admission to Echocardiography Degree Completion Program.

ECH 420B Echocardiography Externship
(0-18-7)
Students work as registered professionals in the field. Cardiac surgical echoes (TEE) and contrast studies using various pharmacological agents. Case study presentation. Prerequisite: Admission to Echocardiography Degree Completion Program.

ECH 421 Echo Senior Project
(4-0-4)
Students design a research-based senior project in the field of echocardiography, including interviews, research, literature review and formal presentation of the project. Prerequisites: ECHO 420; WRI 123 or WRI 227.

(ECO) Economics

ECO 107, ECO 207, ECO 307, ECO 407 Seminar
(Hours to be arranged each term.) SS

ECO 201N Principles of Economics, Microeconomics
(3-0-3) SS
Topics include scarcity, consumer choice, supply and demand, elasticity, cost and pricing theory, theory of market structures (competition, monopoly, monopolistic competition, oligopoly). Pre- or corequisite: MATH 105 or MATH 111.

ECO 202N Principles of Economics, Macroeconomics
(3-0-3) SS
An introduction to the economic problem. Topics include gross domestic product, unemployment, monetary policy, fiscal policy, macro equilibrium, inflation, and supply and demand. Pre- or corequisite: MATH 105 or MATH 111.

ECO 203 Principles of Economics, Special Topics
(3-0-3) SS
A survey of micro- and macroeconomic topics of current interest. Topics may include labor practices, international economics, natural resource economics, urban planning, and economic policy issues. Students prepare a research paper and present results to the class. Prerequisites: ECO 201N, ECO 202N.

ECO 357 Energy Economics and Policy
(3-0-3) SS
Explores the role of energy and energy resources from the economic perspective. Analyzes U.S. and global energy markets and policy; traditional and alternative energy sources; pricing of externalities and public goods; the use of market instruments, subsidies and taxes; and the political economy. Prerequisites: ECO 201N or ECO 202N, and MATH 243 or MATH 361.

ECO 367 International Economics and Finance Management
(4-0-4) SS
Financial management involving international monetary environment; foreign exchange risk management; source and availability of funds to finance trade and multinational operations; taxation planning and control; international portfolio diversification; international banking; capital budgeting; political risk evaluation of performance. Prerequisites: BUS 308 and ECO 201N or ECO 202N.

EE 101, EE 102, EE 103 Introduction to Engineering I, II, III
(0-3-1) (0-3-1) (0-3-1)
A three course sequence introducing the field of engineering, focusing on electrical engineering and renewable energy. Success strategies. Engineering and scientific notation. Ohm's Law. Problem solving, communication skills, ethics in engineering. Professional development and lifelong learning. Introduction to the design process culminating in a team design experience.

EE 107, EE 207, EE 307, EE 407 Seminar
(Hours to be arranged each term.)

EE 131 Digital Electronics I
(3-3-4)
Introduction to combinational logic, gates, Boolean Algebra, Karnaugh Mapping, Number Systems/Codes, arithmetic circuits, decoders/encoders, mux/demux, comparators, basic sequential gates (Latches/FF) introduction to HDL (Verilog/VHDL), PLL HW implementation. Pre- or corequisite: MATH 111.

EE 133 Digital Electronics II
(3-3-4)
Introduction to sequential logic, with HDL, Review latches and flip/flops, timers, counters/registers, HDL implementation, PLL HW Implementation, finite state machine design/analysis, logic testing and timing analysis. Prerequisites: CST 162 or EE 131 with grade “C” or better, MATH 111.

EE 221 Circuits I
(3-3-4)

EE 223 Circuits II
(3-3-4)

EE 225 Circuits III
(3-3-4)
Laplace Transform definitions and properties. Laplace applications. Laplace circuit analysis, including stability concepts. Fourier series. Fourier transform definitions and properties. Steady-state Fourier circuit analysis. Basic two-port parameters and analysis. Prerequisite: EE 223 with grade “C” or better, Corequisite: MATH 321.
EE 236 LabVIEW Programming (3-3-4)
An object oriented programming course using National Instruments LabVIEW programming language designed for programming data-logging, instrumentation and control applications. Basic flow-charting is introduced. Logical constructs as implemented by LabVIEW are investigated. Example control problems are investigated and programmed using LabVIEW. Prerequisite: MATH 112.

EE 301 Optoelectronics I – Optoelectronic Devices and Optical Detection (3-3-4)
Optoelectronic devices including polarizers, retarders, filters, modulators, monochromators, lock-in amplifiers. Propagation of radiation through optical systems. Optical detectors including photovoltaic and photoconductive devices, pyroelectric detectors, linear and area arrays. Photodetector noise, and post-detection electronic amplifiers and filters. Prerequisite: MATH 253N, PHY 223.

EE 303 Optoelectronics II – Lasers (3-3-4)
Laser radiation properties, laser cavities, coherence, atomic spectra, pumping rate, power gain, threshold conditions, resonator stability, beam shape, mode structure, beam modification with intracavity elements. Study of ion, molecular, solid-state, dye and semiconductor lasers. Prerequisite: EE 301 with grade “C” or better.

EE 305 Optoelectronics III – Fiber Optic Principles and Applications (3-3-4)
Light propagation in fibers, fiber types, fiber manufacture, light sources, optical detectors. Termination, coupling, and splicing of fibers. Introduction to fiber optic communication and sensors. Fiber devices, optical time domain reflectometry, fiber amplifiers, fiber lasers, and fiber sensors. Prerequisite: EE 341, EE 301 both with grade “C” or better.

EE 311 Signals and Systems (3-3-4)

EE 320 Advanced Circuit and Systems Analysis (4-3-5)

EE 321 Electronics I (4-3-5)

EE 322 Electronics II (4-3-5)

EE 325 Electronics III (4-3-5)

EE 331 Digital System Design with HDL (3-3-4)
Introduces the student to a Hardware Descriptive Language and describes its role in digital design. Dataflow, Behavioral and Structural Modeling, Logic Partitioning, Hierarchical Design, CPLDs and FPGAs, DC Parameters and CPLD Timing Models. Design examples including keyboard scanner, counters, ALUs, multipliers and controllers. Prerequisite: CST 133 or EE 133, with grade “C” or better.

EE 333 Microcontroller Engineering (3-3-4)
Microcontroller engineering using popular microcontroller, internal structures and control units, timing, interrupts and memory interfacing, assembly language programming specific to microcontroller, on-chip peripheral devices. Prerequisite: EE 331 with grade “C” or better.

EE 335 Advanced Microcontroller Engineering (3-3-4)
Second course Microcontroller Engineering, further use programmable microcontroller peripherals, A/D conversion, PWM, synchronous serial. Prerequisite: EE 333 with grade “C” or better.

EE 341 Electricity and Magnetism with Transmission Lines (4-0-4)

EE 343 Solid-State Electronic Devices (3-0-3)

EE 347 Digital Logic (3-3-4)
Number systems; combinational logic including Boolean algebra, DeMorgan’s Theorems and Karnaugh Maps; digital TTL, CMOS IC characteristics; conventional IC functions; sequential logic including flip-flops, counters, registers and state diagrams. Combinational and sequential logic circuits will be simulated, built and tested. Prerequisite: MATH 112.

EE 401 Communication Systems (4-3-5)
Signal Analysis, Fourier series, Fourier Transforms; Analog signal transmission and Reception (AM, FM, PM); effects of noise in Analog Systems. Digital Data and Communication Systems; effects of noise in Digital Systems. Prerequisites: EE 341 with grade “C” or better; MATH 465.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
A three-term sequence integrating electrical engineering design, group dynamics, and technical communications. Multidisciplinary student teams will be introduced to a major electrical engineering project, ideally supplied by an industrial client working in health-related technologies, optoelectronics or renewable energy engineering. The first term will culminate in a formal written proposal. Student teams will perform engineering design work as defined in the proposal during the second and third terms. The final design and recommendations will be presented orally and in a comprehensive final report. Entire sequence must be completed in three consecutive terms. Prerequisite: Senior standing in EE. Corequisites: WRI 321, WRI 322, WRI 323.

Power electronic device characteristics. Converter circuits: AC/DC, DC/DC, DC/AC. Converter design, modeling and control. Drive and snubber circuits. Thermal and magnetic effects. Prerequisite: EE 321 with grade ”C” or better.

EE 421 Analog Integrated – Circuit Design
(4-3-5)
Models of IC active devices. Review single-transistor and multiple-transistor amplifiers. Current mirrors, active loads, and references. Output stages. Operational amplifiers with single-ended outputs. Frequency response of ICs, noise in ICs, bipolar, MOS and BiCMOS IC technology. Prerequisites: EE 325 and EE 343, both with grade ”C” or better.

EE 423 CMOS Digital Integrated-Circuit Design
(4-3-5)
MOSFETs, threshold voltage, body effect, channel length, CMOS, inverter characteristics, transmission gates, performance (latch-up, parameter estimation, capacitance), domino logic, registers, scan test, layout. Prerequisites: CST 133 or EE 133, EE 321 both with grade ”C” or better.

EE 425 Wireless Communication
(3-3-4)
Baseband digital systems, messages, characters and symbols, sampling theorems. Noise sources, M-ary signals, baseband formatting including PCM waveforms, digital filters including FIR and IIR, Matched filters, band-pass modulation and demodulation techniques, and an introduction to spread spectrum transmission. Prerequisites: EE/CST 133 and EE 223, both with grade ”C” or better.

EE 430 Linear Systems and Digital Signal Processing
(4-3-5)
Introduction to signals and systems. Spectral analysis techniques. Fourier Series and the continuous-time Fourier transform (CTFT). Discrete-time Fourier transform (DTFT) and digital Fourier transform (DFT). Computational spectral analysis using the FFT. FIR and IIR filters. Z-transform. Practical implementation of digital filters and computational spectral analysis using MATLAB. Prerequisite: EE 320.

EE 431 Digital Signal Processing
(3-0-3)
Discrete systems and signals, linear time invariant systems, difference equations, frequency response, Z-transforms, analysis software, discrete Fourier transforms. Prerequisites: EE 311, EE 335, both with grade ”C” or better.

EE 432 Advanced Digital System Design with HDL
(3-3-4)
Advanced digital signal design with hardware description languages such as VHDL and Verilog. Practical application of principles of digital design to system design using FPGAs. Completion of a FPGA-based system design project. Prerequisite: EE 331.

EE 441 Biomedical I – Introduction to Biomedical Engineering
(3-3-4)
Introduction to biomedical engineering, anatomy and physiology for engineers, bioelectric phenomena, biomedical sensors, biomedical instrumentation, biosignal processing, cardiovascular mechanics, biomaterials, tissue engineering, biomedical imaging and clinical engineering. Prerequisite: EE 311 with grade ”C” or better.

EE 443 Biomedical II – Signal Processing
(3-3-4)
Fundamental problems of biomedical signal processing; signal analysis; signal modeling, sources and types of biomedical signals. Arterial and ambulatory blood pressure (ABP/ABPM); intracranial pressures (ICP); pulse oximetry (SpO2); electrocardiogram (ECG), Stochastic, harmonic models, spectrum analysis and time-frequency analysis. Prerequisite: EE 311 with grade ”C” or better.

EE 445 Biomedical III – Instrumentation
(3-3-4)
Review of biological systems (human), signals, measurements and transducers; bio-electrical signals and amplifiers; electrocardiograph (ECG); blood pressure; ultrasonography; x-ray; radiology and nuclear medicine equipment; power sources; electro-magnetic interference (EMI) effects; and electrical safety. Prerequisite: EE 311 with grade ”C” or better.

EE 456 Control System Design
(3-3-4)
Continuous-domain systems and Laplace transform review. System modeling, identification and linearization. System response and stability analysis. Classical tracking and regulating controller design using computers. PID tuning. Lab exercises in modeling, design and implementation. Prerequisites: EE 225 and EE 321, both with grade ”C” or better.

(EET) Electronics Engineering Technology

EET 101 Introduction to Circuit Analysis
(3-0-3)
International system of units; engineering notation and prefixes; definitions of current, voltage, resistance, power, work and efficiency; Ohm’s and Kirchhoff’s laws; series and parallel circuit principles; series-parallel DC resistive networks. Corequisites: EET 102, MATH 100.

EET 102 Introduction to Circuit Analysis Laboratory
(0-3-1)
Theoretical concepts discussed in EET 101 will be verified using available components and instrumentation. Corequisite: EET 101.

EET 107, EET 207, EET 307, EET 407 Seminar
(Hours to be arranged each term.)
EET 115 Network Theorems and Transient Analysis
(3-0-3)
Current sources; source conversion; Thevenin, Norton and superposition theorems; capacitance; magnetic circuits; inductance; transient analysis of RC and RL circuits.
Prerequisite: EET 101 with grade “C” or better.
Corequisites: EET 116, MATH 111.

EET 116 Network Theorems and Transient Analysis Laboratory
(0-3-1)
Theoretical concepts covered in EET 115 verified using available components and instrumentation.
Prerequisite: EET 102.
Corequisite: EET 115.

EET 125 AC Circuit Analysis
(4-0-4)
Sinusoidal AC voltage, phasors, average and effective values, impedance, AC series parallel circuits, AC power, AC network analysis, AC network theorems, dependent sources, transformers.
Prerequisite: EET 115 with grade “C” or better.
Corequisite: MATH 112.

EET 126 AC Circuit Analysis Laboratory
(0-6-2)
Theoretical concepts discussed in EET 125 verified using available components, instrumentation, and computer simulations using PSPICE.
Prerequisite: EET 116 with grade “C” or better.
Corequisite: EET 125.

EET 143 DC and AC Circuit Fundamentals
(5-0-5)
Network theorems applied to DC circuits; source conversions, Thevenin, Norton, superposition; capacitance; magnetic circuits; inductance; transient analysis of RC and RL circuits; sinusoidal waveforms; phasors; reactance and impedance; series, parallel, and series-parallel AC circuits.
Prerequisite: EET 101 with grade “C” or better.
Corequisites: EET 144 or EET 146; MATH 112.

EET 144 DC and AC Circuit Fundamentals Laboratory for LOET
(0-3-1)
Laboratory companion to EET 143 for LOET majors only. This course will not count for EET or CSET majors. Theoretical concepts covered in lecture will be verified using available components and instruments. This course must be taken the same term as EET 143. Written laboratory reports are required.
Prerequisite: EET 102 with grade “C” or better.
Corequisite: EET 143.

EET 209 Introduction to Amplifiers and Semiconductor Devices
(4-0-4)
Prerequisite: EET 125 with grade “C” or better.
Corequisite: EET 210.

EET 210 Introduction to Amplifiers and Semiconductor Devices Laboratory
(0-6-2)
Theoretical concepts discussed in EET 209 verified using available components and instrumentation. Computer simulation using PSPICE.
Prerequisite: EET 126 with grade “C” or better.

EET 215 Digital Circuits I
(3-3-4)
Introduction to combinational logic, gates, boolean algebra, Karnaugh mapping, number systems/codes, arithmetic circuits, encoders/decoders, multiplexers/demultiplexers, comparators, parity, code conversions, introduction to HDL, PLD HW implementation.
Prerequisite: MATH 111.

EET 216 Digital Circuits II
(3-3-4)
Introduction to sequential logic, latches, flip-flops, timers, counters, registers, finite state machines, logic testing. DC parameters and timing analysis.
Prerequisite: EET 215.

EET 217 Electric Circuits I
(3-3-4)
DC Analysis and First-Order Transients. Ohm’s law, Kirchhoff’s laws, nodal analysis, mesh analysis, source transformations, Thevenin and Norton equivalents, maximum power transfer, superposition, introduction to op-amps, inductance and capacitance, transient response of RC and RL circuits.
Prerequisite: MATH 251.

EET 218 Electric Circuits II
(3-3-4)
AC Analysis, Second-Order Transients, introduction to electric power. Transient response of second-order circuits, sinusoids and phasors, sinusoidal steady-state analysis, nodal analysis, mesh analysis, source transformations, Thevenin and Norton equivalents, sinusoidal steady-state power calculations, balanced three-phase circuits, mutual inductance, transformers.
Prerequisites: EET 217, MATH 252.

EET 219 Semiconductor Devices and Amplifiers
(3-3-4)
Introduction to semiconductor devices, characteristics and biasing of diodes and transistors, analysis and design of circuits using diodes, bipolar junction transistors and field-effect transistors. Applications of transistors as diodes and switches.
Prerequisite: EET 218.

EET 235 Transistor Amplifiers
(4-0-4)
Linear small-signal equivalent circuit models. Design and analysis of transistor amplifiers, n-channel, p-channel, JFET, MOSFET, npn, pnp common source, source follower, common-emitter, emitter follower, differential. Input impedance, output impedance, gain, Simple BJTs and FET current mirrors. Midband frequency operation.
Prerequisite: EET 209.
Corequisite: EET 236.

EET 236 Transistor Amplifiers Laboratory
(0-6-2)
Theoretical concepts discussed in EET 235 verified using available components and instrumentation. Computer simulation using PSPICE.
Prerequisite: EET 210.
Corequisite: EET 235.

EET 237 AC Circuits, Filters and Signals
(3-0-3)
RC transient analysis, sinusoidal AC voltage, phasors, average and effective value, the decibel, simple RC transfer functions, low-pass, high-pass and band-pass filters, periodic and aperiodic signals in time and frequency, bandwidth. For non-EE majors.
Prerequisites: EET 115 with grade “C” or better, Math 252.
Corequisite: EET 238.
EET 238 AC Circuits, Filters and Signals Laboratory
(0-3-1)
Lab to accompany EET 237. For non-EET majors.
Prerequisites: EET 115 with grade “C” or better, Math 252.
Corequisite: EET 237.

EET 243 Introduction to Digital Concepts
(3-0-3)
Digital concepts covering Boolean algebra, algebraic simplification, number systems, and various combinational circuit elements (AND, OR, XOR, NAND, NOR gates). Combinational circuit implementation using NAND gates, NOR gates, decoders, encoders, multiplexers, and demultiplexers. Karnaugh Maps are used in the synthesis of combinational circuits.
Prerequisite: EET 125.
Corequisite: EET 244.

EET 244 Introduction to Digital Concepts Laboratory
(0-3-1)
Circuits will be built using integrated circuits to reinforce the theoretical concepts discussed in EET 243. Computer simulation.
Prerequisite: EET 126.
Corequisite: EET 243.

EET 245 Digital Logic
(3-0-3)
Combinational logic design using multiplexers, decoders, ROMs, and PLAs. Sequential circuit elements (flip-flops) presented along with applications such as counters and registers. Basic TTL and CMOS circuits analyzed.
Prerequisite: EET 243.
Corequisite: EET 246.

EET 246 Digital Logic Laboratory
(0-6-2)
Combinational and sequential designs built using MSI, SSI, and LSI integrated circuits. Circuits tested and simulated.
Prerequisite: EET 244.
Corequisite: EET 245.

EET 249 Digital Logic Laboratory for LOET
(0-3-1)
Laboratory companion to EET 245 for LOET majors only. This course will not count for EET or CSET majors. Theoretical concepts covered in lecture will be verified using available components and instruments. This course must be taken the same term as EET 245. Written laboratory reports are required.
Prerequisite: EET 244.
Corequisite: EET 245.

EET 265 Amplifier Frequency Response
(4-0-4)
Bode Plots, effects of coupling and bypass capacitors, design of BJT and FET amplifiers, design of wideband amplifiers, tuned-circuit techniques, series and parallel resonance, tuned amplifiers, crystal-controlled oscillators.
Prerequisite: EET 235.
Corequisite: EET 266.

EET 266 Amplifier Frequency Response Laboratory
(0-6-2)
Theoretical concepts discussed in EET 265 verified using available components and instrumentation. Computer simulation using PSPICE.
Prerequisite: EET 236.
Corequisite: EET 265.

EET 275 Power Amplifiers and Special Devices
(3-0-3)
Thermal modeling, power devices, class A amplifiers, transformer-coupled amplifiers, class B push-pull amplifiers, power supplies, rectifier circuits, zener diodes, voltage regulators, switching regulators, thyristors, SCRs, DIACs, TRIACs, optoelectronics, LEDs, photodiodes, phototransistors, optocouplers, selected devices.
Prerequisite: EET 235.
Corequisite: EET 276.

EET 276 Power Amplifiers and Special Devices Laboratory
(0-6-2)
Theoretical concepts discussed in EET 275 verified using available components and instrumentation. Computer simulation using PSPICE.
Prerequisite: EET 236.
Corequisite: EET 275.

EET 281 Topics in Network Analysis
(3-0-3)
Prerequisite: Department approval.
Corequisite: EET 285.

EET 283 Topics in Digital Circuits
(2-3-3)
Prerequisite: Department approval.

EET 285 Topics in Analog Devices and Circuits
(3-0-3)
Analysis of AC small and large signal conditions for bipolar junction field-effect transistors and MOS field effect devices. Frequency effect of single stage amplifiers. Multistage amplifier circuits. Designed for community college transfer students.
Prerequisite: Department approval.
Corequisites: MATH 251, EET 286.

EET 286 Topics in Analog Devices and Circuits Laboratory
(0-3-1)
Laboratory companion to EET 285. Theoretical concepts discussed in lecture will be verified using available components and instrumentation. Must be taken during the same term with EET 285. Designed for community college transfer students.
Prerequisite: Department approval.
Corequisite: EET 285.

EET 298 Reading and Conference
(Hours to be arranged each term.)

EET 299 Laboratory Practice
(Hours to be arranged each term.)

EET 308 Introduction to MOS Microelectronics
(3-0-3)
Introduction to microelectronics, semiconductor physics, integrated circuit (IC) technology, pn junction and MOS (Metal-Oxide-Semiconductor) electrostatics, MOS FETs (Field-Effect Transistors), selected digital circuits using CMOS (Complementary MOS) FETs, PSPICE modeling of IC MOSFETs.
Prerequisites: EET 245 or EET 237 and CST 262 or instructor consent.
Corequisite: EET 309.

EET 309 Introduction to MOS Microelectronics Laboratory
(0-3-1)
Laboratory companion to EET 308. Theoretical concepts discussed in lecture verified using available components and instrumentation. Computer simulation using PSPICE. Written and oral laboratory reports required.
Prerequisites: EET 246 or EET 238 and CST 262 or instructor consent.
Corequisite: EET 308.
EET 319 Fundamentals of Microwave and RF Technology
(3-0-3)
Introductory topics in the field of microwaves. Transmission lines (wave propagation, losses, reflected waves, and standing waves), Smith Charts, waveguides, microstrip circuits, and s-parameters are covered. Problem solving will use tools such as Smith Charts and software packages.
Prerequisite: EET 373.
Corequisite: EET 472.

EET 340 Optics
(3-3-4)
A course in geometrical and wave optics. Topics in reflection and refraction at plane and curved surfaces; imaging properties of lenses; paraxial ray tracing of optical systems; superposition; interference; interferometers; diffraction; polarization; scattering.
Prerequisites: PHY 223, MATH 252.

EET 358 Senior Project: Individual Project Proposal
(1-3-2)
Selection, definition, and analysis of a problem suitable for senior project prior to actual project development. Includes consideration of project parameters and implications, proposal of alternate solutions, and justification of selected solution. Culminates in writing of project proposal.
Prerequisites: EET 363, EET 373.
Corequisites: WRI 321, EET Department approval.

EET 361 Digital Systems I
(4-3-5)
State machine design including state reduction and state assignment. Sequential circuit analysis. Digital system implementation using MSI devices such as ROMs and PLDs. Asynchronous state machines analyzed and designed. Computer circuits and memory elements used.

EET 362 Digital Systems II
(4-3-5)
Design digital systems using programmable devices as well as conventional building blocks. System controllers designed using state tables, ASM charts and VHDL. Laboratory explorations and projects of theoretical concepts.

EET 363 Introduction to Microcontrollers
(4-3-5)
A study of Motorola 68HC12 microcontroller. Internal structure, registers, busses, control unit. Clock, machine and instruction cycle timing, interrupts and DMA. Instruction set, mnemonics, functions and assembly language programming. Interfacing to external memory and I/O on chip peripherals. Laboratory explorations and projects of theoretical concepts.

EET 364 Microcontroller Systems
(4-3-5)
Advanced features of Motorola 68HC12 Microcontroller System environment with the external memory and peripheral devices. Advanced numerical routines. Digital control systems, displays, and tranducers. Laboratory explorations and projects of theoretical concepts.

EET 371 LaPlace Transforms and Applications
(4-3-5)
Applications of LaPlace in first and second order networks; poles, zeros and stability in S-plane; active filters and oscillators. Laboratory explorations and projects of theoretical concepts.

EET 373 Operational Amplifiers and Applications
(4-3-5)
Properties, modeling and analysis of feedback systems using the operational amplifier. Stability and frequency compensation of operational amplifiers. Oscillators, nonlinear circuit applications, Schmitt trigger, analog switches, peak detectors and sample and hold. A/D and D/A conversion techniques. Laboratory explorations and projects of theoretical concepts.

EET 405 Reading and Conference
(Hours to be arranged each term.)

EET 408 Workshop
(Hours to be arranged each term.)

EET 413 Data Communications
(3-0-3)
Principles and techniques of analog to digital conversion; encoding digital data; fundamentals of transmission media; error detection and correction; transmission protocols; multiplexing techniques; time, frequency and code division multiplexing; switching concepts: packet switching, frame relay and asynchronous transfer mode.
Prerequisite: Senior standing in EET.

EET 415 Telecommunications I
(2-3-3)
Introduction to telecommunications. Electromagnetic wave propagation in free space, antennas, line of sight transmission (directive gain, beam width, polarization, impedance), RF components (amplifiers, mixers, up-converters), receivers, and transmitters. Laboratory assignments and demonstrations include antenna gain and field strength.
Prerequisite: EET 319.

EET 416 Microwave and RF Amplifier Design
(3-0-3)
An introduction to the design of amplifiers in the frequency range of one half to ten gigahertz. Impedance matching, modeling, dynamic range, unilateral design, bilateral design, stability, low noise design, and broadband design techniques. Students will use software to perform impedance matching, Smith chart plotting, and simulation.
Prerequisite: EET 415.

EET 421 Active Filter Design
(3-0-3)
An introduction to the design and analysis of active filters including Butterworth, Chebychev, Bessel, and Elliptic filters. Low-pass through band-pass filters are covered. The course includes one hardware and one software project.
Prerequisite: EET 371.
Corequisite: EET 373.

EET 423 ASIC Design I Senior Project
(2-3-3)
An introduction to various aspects of the design of an ASIC (Application Specific Integrated Circuit) and to new industry trends both in digital and analog design. Laboratory demonstrations and experiments with a complete EDA (Electronics Design Automation) software package. Senior project proposal required.
Prerequisites: EET 361 and EET 373.
Pre- or corequisites: EET 464 and EET 473.

EET 425 Telecommunications II
(2-3-3)
Baseband digital systems; messages, characters and symbols; review of sampling theorems and discrete vs continuous signals; noise sources in digital communications system; M-ary signals; baseband formatting including PCM waveforms; digital filters, including FIR and IIR, raised cosine filters, matched filters; bandpass modulation and demodulation techniques; spectrum transmission.
Prerequisite: EET 415.
EET 433 ASIC Design II Senior Project
(1-6-3)
Advanced topics in ASIC design: behavioral description languages, timing in digital design, design for testability, fault simulation. Field Programmable Logic Devices (FPGA). Simulation and prototyping of the senior project with FGPGAs. Senior project report required.
Prerequisite: EET 423.

EET 435 Telecommunications III
(0-9-3)
A capstone course in telecommunications. Students will propose, design and construct/simulate a solution to some telecommunications problem or issue. The student will research vendor data books, application notes, articles and texts to support the design of a telecommunications related circuit, module, or system. A final paper will be written and presented to a faculty board.
Prerequisites: EET 415, EET 425, EET 455.

EET 436 Optoelectronic Devices
(3-3-4)
An introduction to devices commonly used in opto-electronics. Devices and instruments studied include photodiodes, polarizers, retarders, filters, modulators, monochromators, integrating spheres and lock-in amplifiers.
Prerequisite: EET 373.

EET 437 Optical Detection
(3-3-4)
Propagation of optical radiation through optical systems. UV and visible optical detectors including photovoltaic and photoconductive detectors, pyroelectric detectors, linear and area arrays. Noise in photo detectors. Post detection electronic amplifiers and filters.
Prerequisites: EET 436, MATH 254N.

EET 443 ASIC Design III Senior Project
(0-9-3)
Completion of an integrated circuit design. Creation of an IC prototype in FPGA or/and a file for fabrication in silicon. Final report containing project documentation required.
Prerequisite: EET 433.

EET 445 Optical Fibers
(3-3-4)
Theory and practice of light propagation in optical fibers, light sources, types of optical fiber, optical detectors. Termination, coupling and splicing of optical fibers.
Prerequisites: EET 436, MATH 254N.

EET 447 Topics in Optoelectronics
(0-3-1)
A course designed to give the student additional capabilities with a variety of optics systems and instrumentation. Possible topics include large optics, optical arrays, Fresnel optics, interferometers, spectrometers, thin films and coatings, polarization. All topics to be investigated in a lab setting.
Pre- or corequisite: EET 436

EET 454 Automated Test Engineering I
(2-3-3)
An introduction to Automated Test Engineering (ATE). Topics include: measurement techniques for ATE instruments, measurement errors, and software used to control automated instruments. The IEEE-488 bus is also discussed. Students will complete a group term project.
Prerequisites: CST 116, EET 363, EET 373.

EET 455 Digital System Design
(3-0-3)
Use of register-transfer-language (RTL) notation to describe digital systems. Design of virtual machine, instruction set, random and micro-programmed control units for a typical digital computer. Design of a floating point coprocessor. Description of advanced architecture concepts, multiprocessors, cache memory, pipe-line virtual machines.
Prerequisite: EET 364.

EET 458 Senior Project: Individual Project Design
(1-3-2)
A continuation of EET 358 with emphasis on manufacturer and vendor contact resulting in verification and implementation of proposal tradeoffs in support of prototype design and construction. Prototype construction of project solution begins. Report produced on design calculations and functional analysis of hardware and/or software needed for project solution.
Prerequisite: EET 358.
Corequisite: WRI 322.

EET 459 Digital Signal Processing II Senior Project
(3-0-3)
Analysis and synthesis of digital signal processing systems including the following topics: nonrecursive and recursive filters; hardware accelerators; digital speech processing. Most of the homework will be done using special applications software running on PC based work stations. DSP project proposal.
Prerequisite: EET 471.

EET 461 Optoelectronic Principles
(3-0-3)
A course to investigate the physics associated with a variety of commonly used optical devices. Solid-state physics required to understand function of optical devices such as detectors, solid-state lasers, and optical modulators. Quantum aspects of optics leading to the understanding of photo-emissive devices, optical radiation and laser dynamics.
Prerequisites: PHY 223, MATH 254N.

EET 462 Lasers
(3-3-4)
Laser radiation properties, laser cavities, coherence, atomic spectra, Boltzmann statistics, pumping rate, power gain, threshold conditions, resonator stability, beam shape, mode structure, beam modification with intracavity elements.
Prerequisite: EET 461.

EET 463 Quality Assurance and Reliability
(3-0-3)
Prerequisites: Senior standing, MATH 254N.

EET 464 Automated Test Engineering II
(2-3-3)
A continuation of EET 454. Topics include: measurement techniques and error in digital circuits, IEEE-488 and VXI bus structures, design for test and test error analysis. Course includes a group term project.
Prerequisite: EET 454.

EET 465 Optoelectronic Applications
(3-3-4)
A course designed to further the knowledge and capabilities of the optoelectronics student in fields of interest. Possible areas of study include: Optical Testing, Fourier Optics, Holography, Crystal Optics, Laser Systems and Fiber Optic Systems.
Prerequisites: EET 462, EET 436, EET 437.

EET 467 Modern Control Systems
(3-0-3)
Analysis and application of modern control system theory in selected areas of electronics, industrial process control, and other systems. The phase-lock-loop is analyzed as the introductory example of a control system application. S and Z transforms are developed in control system contexts.
Prerequisites: EET 373, MATH 321.
EET 468 Senior Project: Individual Project Evaluation
(1-12-5)
A project laboratory (continuation of EET 458). Project proposed in EET 358 and designed in EET 458 will be constructed, tested, evaluated and packaged. Complete documentation with performance specifications, functional description, design calculations, test results, schematics, performance graphs, flowcharts, parts lists, wiring diagrams, and photographs become part of the complete senior project final report. The student will defend his/her project before a review panel that will consist of the senior project advisor, another technically qualified panelist and a third person of the student's choice.
Prerequisite: EET 458.
Corequisite: WRI 323.

EET 469 Digital Signal Processing III Senior Project
(0-9-3)
Digital Signal Processing senior projects defined in EET 459 will be designed and implemented. The projects will generally include both hardware and software. A final paper will be written and an oral presentation given.
Prerequisite: EET 459.

EET 471 Digital Signal Processing
(4-3-5)
Analysis of discrete systems and signals including the following topics: discrete signals; linear time invariant systems, difference equations, frequency response, Z transforms. Analysis software applied to solutions. Discrete Fourier transforms. Spectral analysis. Laboratory explorations and projects of theoretical concepts.

EET 472 Communication Systems
(4-3-5)
Fourier series and transforms. System noise sources and definitions. Amplitude, frequency and phase modulation. Principles of superheterodyne receivers. Transmitter circuits and phase lock loop. Digital modulation techniques such as FSK, PSK and QPSK. Laboratory explorations and projects of theoretical concepts.

EET 473 Analysis and Design of Analog Integrated Circuits
(4-3-5)
The properties, modeling and analysis of bipolar and field effect transistor circuits commonly found in analog integrated circuits. Topics include high frequency effects, multistage circuits, active loads, output stages and the design of a complete integrated circuit operational amplifier. Laboratory explorations and projects of theoretical concepts.

EET 476 Optoelectronics Senior Project
(1-6-3)
Capstone course in optoelectronics. Students will propose, design and construct an optoelectronics circuit, module or system.
Prerequisites: EET 447, EET 465.

Emergency Medical Technology--Paramedic (EMS)

EMS 107, EMS 207 Seminar
(Hours to be arranged each term.)

EMS 200 Medical Terminology
(3-0-3)
Students build a strong medical vocabulary using prefixes, suffixes, and Greek and Latin verbs and adjectives. Students learn anatomical roots and examine anatomical structures, disease, procedures, tumors, and descriptive terms using simple word analysis.

EMS 211 Prehospital Emergency Pharmacology
(3-0-3)
Lectures relating specific emergencies to the types of medications used for treatment. Includes classifications, actions, indications, administration and dosages, precautions and side effects of each of the medications used in prehospital treatment of medical and traumatic emergencies. In addition, students learn common prescription medications found in the home.
Prerequisite: CHE 210.

EMS 215 Essentials of Paramedicine
(3-0-3)
A foundation course that provides the necessary context for a successful career in EMS. Topics include exploration of EMS system design, legal theory and application, medical ethics and analysis of industry trends. The course provides requisite background to function within the National Incident Management System.

EMS 218 Trauma Assessment and Management
(3-0-3)
Introduction to kinematics of trauma, and rescue techniques. Pathophysiology, assessment, and management of fluids and shock, CNS injuries, soft tissue injuries, burns, extremity injuries, spinal immobilization, control of hemorrhage and unique considerations in geriatric, pediatric and pregnant patients. Includes completion of Prehospital Trauma Life Support Course.

EMS 231 Medical Emergencies I
(3-0-3)
The first in a series of three, this course discusses the cardiac and pulmonary related emergencies including the pathophysiology, assessment and management; arterial blood gases, acid base balance; airway and ventilation, basic and advanced airway management techniques and the differential diagnosis of cardiac and pulmonary diseases.

EMS 232 Medical Emergencies II
(4-0-4)
Course content includes the pathophysiology, assessment and management of neurological, abdominal/genitourinary and endocrine emergencies. Students learn to assess and manage normal and abnormal obstetric patients, as well as neonate and pediatric patients.
Prerequisite: EMS 231.

EMS 233 Medical Emergencies III
(3-0-3)
Integrates pathophysiology, assessment findings, and the psychosocial needs of special patient populations, including geriatrics, psychiatric, patients with drug or alcohol addictions and patients with special challenges. Students learn to form a field impression and a treatment plan for these patients.
Prerequisite: EMS 232.

EMS 235 Basic Electrocardiography
(2-0-2)

EMS 236 Advanced Electrocardiography
(2-0-2)
Building upon basic EKG knowledge, this course advances into 12-lead EKG interpretation and prehospital treatment. Focusing on signs and symptoms of ischemia or infarction, axis deviation, and other EKG anomalies, students learn about various treatment modalities.

EMS 271 EMT--Paramedic Skills Laboratory Part I
(0-6-2)
Offers the first part of a two-term course. Reviews EMT--Basic skills. Students learn and practice skills included in the EMT-Paramedic scope of practice. Advanced life support skills offered in part one include advanced patient assessment skills, airway and intubation, IV fluids and medication administration, cardiac monitoring and defibrillation, scenario based learning and evaluation.
EMS 272 EMT-Paramedic Skills Laboratory Part II
(0-9-3)
Continues the learning and practice of skills acquired in EMT-Paramedic Skills Lab, Part 1 with the addition of new skills learned in obstetrics, pediatrics, and medical emergencies. Includes invasive skills lab sessions, and scenario based learning and evaluation. Prerequisite: EMS 271.

EMS 273 EMT-Paramedic Skills Laboratory Part III
(0-6-2)
This course is designed to strengthen the student’s team lead abilities and to enhance critical thinking and decision-making skills through scenario-based skills practice sessions. Students prepare for national certification practical exam stations. Prerequisite: EMS 272.

EMS 281 Clinical Practicum I
(0-18-6)
Part I of a two-part clinical experience correlating knowledge and skills presented in lectures and labs. Supervised experience provided in emergency departments, respiratory therapy, psychosocial, poison control, EMS communications, anesthesia, surgical rounds, medical/cardiac critical care units, pediatrics and labor and delivery.

EMS 282 Clinical Practicum II
(0-36-12)
Continuation of a two-part clinical experience correlating knowledge and skills presented in lectures and labs. Supervised experience provided in emergency departments, respiratory therapy, psychosocial, poison control, EMS communications, anesthesia, surgical and medical critical care units, pediatrics and labor and delivery.

EMS 290 Field Externship Practicum
(0-54-18)
Field experience with an affiliated advanced life support transporting agency. Students work under the direct supervision of a paramedic field training officer.

(ENGR) Engineering

ENGR 101 Introduction to Engineering I
(1-3-2)
Introduces the student to engineering with a focus on academic success, professional development, ethics, communication, and creative problem solving techniques, engineering tools (CAD/CAE), and design concepts. An interdisciplin ary team-based laboratory experience encourages consideration of the various engineering disciplines.

ENGR 102 Introduction to Engineering II
(1-3-2)
The student will focus on their chosen discipline through a discipline-specific team-based design project including problem identification, measurement, analysis and presentation to peers. Emphasis will be placed on proper usage of engineering tools and instruments and sound design practices. Prerequisite: ENGR 101.

ENGR 207 Seminar
(Hours to be arranged each term.)

ENGR 211 Statics
(4-0-4)
Fundamental principles of mechanics of rigid bodies and the application of these principles to engineering problems. Pre- or corequisite: MATH 252. Prerequisite: PHY 201 or PHY 221.

ENGR 212 Dynamics
(3-0-3)
Kinematics of particles and rigid bodies. Kinetics of particles and rigid bodies in plane motion, including Newton’s second law, work and energy, and impulse and momentum. Prerequisites: ENGR 211, MATH 252.

ENGR 213 Strength of Materials
(3-3-4)
Internal stresses and deformations of structural members and machines when subjected to external forces. Prerequisite: ENGR 211.

ENGR 231 Fluid Mechanics
(3-3-4)
Fundamental properties of fluids, fluid statics, fluids in motion, dimensional analysis and similarity, flow in conduits, and flow measuring devices. Emphasis on practical applications of fluid mechanics principles. Prerequisites: ENGR 211 and MATH 252.

ENGR 265 Capstone Project
(0-6-2)
Students apply material learned in other courses, develop expertise on a specific topic, work closely with a faculty member to implement the project and improve professional communication skills by writing a project report. Course may be repeated for credit. Prerequisites: Junior standing and instructor permission.

ENGR 355 Thermodynamics
(3-0-3)
An introductory course in thermodynamics, the science of heat energy conversion. Develops understanding of energy, heat, work, efficiency, and ideal thermodynamic cycles. Teaches first and second laws of thermodynamics and perfect gas law. Prerequisites: MATH 252; PHY 202 or PHY 222.

ENGR 407 Seminar
(Hours to be arranged each term.)

ENGR 465 Capstone Project
(0-6-2)
Prerequisites: ENGR 211 and MATH 252.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
ENGR 485 Fundamentals of Engineering Exam
(1-0-1)
Students are required to take the Fundamentals of Engineering Exam offered by the Oregon State Board of Examiners for Engineering and Land Surveying, or other state board with prior approval of program director.
Prerequisite: Graduating Senior.

(ENGT) Engineering Technology

ENGT 101 Engineering Technology Techniques
(2-6-4)
Engineering terminology and problem solving tools including computer aided drafting, technical sketching, word processing, spread sheets, multiview projections, significant figures, and engineering problem solving techniques.
Prerequisite: MATH 100.

ENGT 103 Engineering Terminology
(3-2-4)
Terminology, symbols, and units commonly used in the engineering field. Interpretation and reproduction techniques of engineering drawings and graphs. A brief overview of the field of civil engineering. This course is designed primarily for the Office Systems Technology program.

ENGT 104 Electrical and Electronic Nomenclature and Symbols
(3-0-3)
A survey course in basic electricity and electronics, emphasizing terminology and nomenclature. This course is designed primarily for the Office Systems Technology program.

ENGT 107, ENGT 207, ENGT 307, ENGT 407 Seminar
(Hours to be arranged each term.)

ENGT 230 Statics
(3-0-3)
Fundamental principles of mechanics of rigid bodies and the application of these principles to engineering problems
Corequisite: MATH 112.

ENGT 231 Strength of Materials
(3-0-3)
Internal stresses, deflections, and deformations of structural members and machines when subjected to external forces.
Prerequisite: ENGT 230 or ENGR 211.

ENGT 232 Advanced Strength of Materials
(2-3-3)
Internal stresses, deflections, and deformations of structural members and machines when subjected to external forces. Column buckling, 3-D stress states, and failure criteria.
Prerequisite: ENGT 231.

ENGT 301 Introduction to Geothermal Energy
(3-0-3)
Overview of geothermal energy: distribution, geology, hydrology, and geochemistry; exploration and extraction techniques; uses including power generation, space heating, agriculture, process and multistage utilization; and environmental, economic, and legal considerations. Field trips to local sites.

ENGT 311 Passive Solar and Solar Cell Design
(3-0-3)
Residential passive solar heating and super-insulation construction techniques including heat load calculations using the Balcomb SHF method. Technical and economic analysis of solar electric cells, storage batteries, and inverter technology.
Prerequisite: PHY 202 or instructor consent.

ENGT 312 Critical Path Techniques
(1-3-2)
Scheduling techniques used by management on engineering and industrial projects. The course will concentrate on the Critical Path Method (CPM), but will also include comparisons with Gantt charts and Program Evaluation Review Technique (PERT). Concepts will be applied to mini-projects in class and expanded through the use of selected computer software packages.

ENGT 370 Introduction to Automation and Robotics
(2-3-3)
A survey of automation and all areas of robotics with an emphasis on the industrial robot. It will include history, terminology, use, future, impact on society, and hands-on laboratories.
Prerequisites: MATH 112, a programming course.

ENGT 390, 490 Co-op Field Practice
(Variable Credit)
An approved work program related to the student's field of specialization for a continuous three-month or six-month period. The employer and the type, level, and difficulty of the particular job must be approved by the student's Engineering Technology Department prior to the employment period. A written comprehensive report of each season's activity must be submitted during the following term of residence.
Prerequisites: Associate degree and two terms of residence.

ENGT 391, 491 Co-op Field Practice
(Variable Credit)
An approved work program related to the student's field of specialization for a continuous three-month period.

ENGT 415 Occupational Safety
(2-3-3)
Topics include current occupational safety and health issues. Practical application of regulations in the industrial setting. Compliance to Industrial Hygiene and General Safety Standards. Common safety violations and implementation of safety programs.
Prerequisite: Junior standing in MFG.

ENGT 471 Microprocessor Application in Automation and Robotics
(2-3-3)
This is an applied course in using microprocessors to support controlling motion, such as in robotic manipulators and automated equipment and interfacing sensor inputs.
Prerequisites: CST 331 and ENGT 370.

ENGT 500 Research Methods
(3-0-3)
Study of industrial analytical techniques used to develop new technologies, including the use of computer aided engineering systems and software for design purposes. Examination of research and development methods, current industrial practices and applications of new technologies.

ENGT 507 Seminar
(Hours to be arranged each term.)
In-depth examination of current theories, research, trends and processes of industry. Individual study, information exchange, and research of selected industrial topics.
ENGT 518 Data Communications
(3-3-4)
Data communications and computer network protocols, hardware elements, and software algorithms. Error handling, routing, flow control, host-to-host communications, and local area networks.

ENGT 521 ASIC Design I
(3-3-4)
Techniques for designing Application Specific Integrated Circuits (ASICs). Comprehensive study of computer concepts using computer aided design tools. Implementation of ASIC devices in digital computing systems including: modeling (using VHDL), digital synthesis, place and routing functions, and layout. Design exercises accomplished using hardware description languages and simulation. Prerequisite: VLSI or ASIC coursework or experience.

ENGT 522 ASIC Design II
(3-3-4)
Techniques used to transform hardware description language-based designs to physical layout. Applications of synthesis tools for floor planning and layout of Application Specific Integrated Circuits. Comprehensive study of logic design, layout generated design, and advanced CMOS circuit techniques used when designing with standard cells. Prerequisite: ENGT 521.

ENGT 523 Advanced ASIC Design
(3-3-4)
Introduction to very large scale integration (VLSI) technology and design of CMOS integrated circuits including: the device fabrication process and design rules as they apply to device layout. Analysis, design, simulation and layout rules presented. Logic gates and function design, simulation and physical layout. Prerequisite: ENGT 522.

ENGT 545 Advanced Microcomputers
(3-3-4)
Microprocessor technology and its application to the design of practical digital computing systems. Design techniques used to develop and design newer generation microprocessor-based computing systems. Assembly language programming and interfacing of microprocessor-based systems. Prerequisite: Microprocessor coursework or experience.

ENGT 546 Advanced Computer Architectures
(3-3-4)
Advanced topics in computer architectures including design of computer hardware, organizational structures, and architectural properties of parallel, vector and multiprocessor systems. Computer organizational structures of memory and I/O subsystems, multiprocessor computer architectures, and data flow computers. Prerequisite: Course work or experience in computer architecture and organization.

ENGT 565 Semiconductor Device Physics and Processes
(3-0-3)
Simple models and physical insight to solid state physics. Crystal structure and symmetry, crystal lattices, reciprocal lattices, equilibrium and nonequilibrium processes in semiconductors. Thermal properties, energy band, and semicon-ductor properties.

ENGT 581 Master's Project I
(1-9-4)
Students prepare the proposal for the Master's project under the guidance of a project advisor. Project proposal guidelines and accepted format presented. Approval of the proposal by the student's project committee constitutes completion of the course.

ENGT 582 Master's Project II
(1-9-4)
Students complete task specified by the project advisor. Preliminary results of the student's project presented to the student's project committee. Acceptance of these results constitutes completion of the course. Prerequisite: ENGT 581.

ENGT 583 Master's Project III
(1-9-4)
Students produce the final report demonstrating the completion of the project. Final results of the student's Master's project presented to the student's project committee. Acceptance of the report by the student's project committee constitutes completion of the course. Prerequisite: ENGT 582.

(ENG) English

ENG 104, ENG 105, ENG 106 Introduction to Literature
(3-0-3) H
Literature and the nature of literary experience through reading of prose and poetry drawn from American and other literatures. Works representing principal literary types are read in their entirety when possible, with emphasis on such elements as structure, style, characterization, imagery, and symbolism.

ENG 107, ENG 207, ENG 307, ENG 407 Seminar
(Hours to be arranged each term.) H

ENG 235 American Multicultural Literature
(3-0-3) H
An introductory study of short stories, poetry, essays, and a novel that illustrates the diversity of North American culture.

ENG 246 Reading for Fiction Writers
(3-0-3) H
Examines the elements, structures and traditions of fiction writing through readings, discussions, and creative writing exercises. For students interested in writing fiction. Prerequisite: WRI 122.

ENG 253 American Literature I
(3-0-3) H
A study of the romantic movement in American literature, 1800-1860, including the works of Irving, Emerson, Melville, Thoreau, Poe, Hawthorne, and Whitman.

ENG 254 American Literature II
(3-0-3) H
A study of the realistic movement in American literature, 1860-1916, including the works of Dickinson, Howells, James, Cather, Crane, and Twain.

ENG 255 American Literature III
(3-0-3) H
A study of the major writers and movements in American literature from World War I to the present, including the works of Hughes, Faulkner, Steinbeck, Plath, Silko, Bartheleme, and Carver.
ENG 266 Native American Literature and Film
(3-0-3) H
Explores connections to the human condition found in literature and stories authored by Native Americans with focus on a variety of themes including assimilation, ethnicity, survival and stereotyping. Documentary films and commercial cinema support and lend context to the readings. Students are encouraged to define and/or redefine their worldviews.

ENG 367 Art and Trash in Contemporary Fiction
(3-0-3) H
In-depth study of contemporary fiction, finding meaning in literature responsive to the human condition and relevant to the reader. Includes works from authors such as Margaret Atwood, Tim O’Brien, Alice Munro and Anthony Doerr. Prerequisite: WRI 122.

ENG 373 British Culture and Literature: Romanticism to the Present
(3-0-3) H
Explores features of culture and selected works and writers from the Nineteenth and Twentieth Centuries in Britain. Some film presentation included.

ENG 381 Contemporary World Literature
(3-0-3) H
An in-depth study of selected writers and works organized thematically, geographically, and ethnically. The focus on contemporary works provides insight into current world cultures and explores globalization while encouraging students to critically examine their worldviews. Prerequisite: WRI 122.

ENG 456 Topics in Film
(3-0-3) H
Examines films as stories using modern literary criticism techniques. Offerings include close analysis of contemporary film, selected directors, selected genres and surveys of film history. Prerequisites: 3 credits of English or Humanities and WRI 121.

ENV 207, ENV 307, ENV 407 Seminar
(Hours to be arranged each term.)
Prerequisite: ENV major or instructor consent.

ENV 112 Environmental Social Sciences
(2-0-2)
An introduction to the integration of science, social systems, environmental policy, and sustainability focusing on types of data, sampling techniques, and statistical methods used by social scientists. Emphasis on active learning and case study approaches. Prerequisites: BIO 111, BIO 112, ECO 201N, MATH 111 or instructor consent.

ENV 314 Environmental Regulation
(3-0-3)
Legislation and enforcement activities involving natural and industrial environments. Conservation laws, land use and planning, responsibilities of regulatory agencies, review of current legislative actions and judicial decisions. Prerequisites: WRI 122.

ENV 318 Systems Modeling
(2-3-3)

ENV 325 Environmental Microbiology
(2-6-4)
Microbial processes with emphasis on soil and water habitats. The impact of microorganisms in health, water and food sanitation, waste disposal, and bioremediation. Microscopy, laboratory, and field techniques for the isolation and identification of microorganisms. Prerequisites: BIO 213, CHE 223.

ENV 336 Environmental Hydrology
(3-3-4)
Study of the hydrologic cycle; quantitative measurement of precipitation, infiltration, runoff, streamflow and storage in watersheds. Curve fitting, hydrographic analysis, statistical analysis of extreme flows, flood routing and runoff modeling for small and urban watersheds. Prerequisites: BIO 225, MATH 252, MATH 361.

ENV 427 Greenhouse Gas Accounting/ Footprints
(3-0-3)
Course topics include US and international greenhouse gas (GHG) management policies. GHG assessment methods and tools, emissions trading programs, climate risk and risk management, data and information sources, measurement standards and protocols and related sustainability concepts and policies. Course also listed as REE 427 (cannot be used for graduation credit by students who have taken REE 427). Prerequisites: Junior or senior standing, MATH 361 and WRI 227.

ENV 435 Atmospheric Physics
(3-3-4)
The physics of transport and diffusion of air pollution. Atmospheric thermodynamics. Mixing heights, plume rise, and fundamentals of atmospheric turbulence. Eulerian and Lagrangian dispersion models. Prerequisites: MATH 252, PHY 202 or PHY 222.

ENV 466 Integrated Watershed Analysis
(3-3-4)

ENV 469 Treatment Wetlands
(3-0-3)
Treatment wetland features; biological, chemical and physical properties. Planning, design and performance assessment principles for municipal, agricultural and stormwater treatment wetlands. Considers vegetation and microbiology, aerobic and anaerobic biogeochemistry, hydraulics and treatment efficiencies. Local case studies. Prerequisites: CHE 202, MATH 251.
(GEOG) Geography

GEOG 105 Physical Geography: Geomorphology
(3-0-3)
Landforms and geomorphological processes, including tectonics, erosion and weathering and biological influences. Satisfies Science elective.

GEOG 106 Cultural Geography I
(3-0-3) SS
Cultural geography of the major world developed regions other than the United States - Europe, Australia and New Zealand, the former Soviet Union, Canada and Japan. The course emphasizes the regional approach.

GEOG 107 Cultural Geography II
(3-0-3) SS
Cultural geography of the world's underdeveloped realms - the countries of Middle and South Americas, Africa and Asia. The course emphasizes the regional approach.

GEOG 108 Cultural Geography III
(3-0-3) SS
An introduction to cultural geography of selected world realms, namely The Middle East, South Asia, East Asia, Southeast Asia, and The Pacific Realm. Cultural imprints on the physical landscape will be discussed and regional approach emphasized.

GEOG 115 Physical Geography: Climatology
(3-3-4)
Weather and climate: atmospheric pressure, wind, moisture, global climate patterns, glacial processes and the hydrosphere. Analysis of weather data, satellite tracking of storms and construction of climatographs. Satisfies lab science.

GEOG 207, 307, 407 Seminar
(Hours to be arranged each term.) SS

(GIS) Geographic Information Systems

GIS 103 Introduction to GIS
(0-3-1)
Introduction to concept, basic vocabulary, and use of GIS and databases. Projections and coordinate systems. Modeling real world features using vector, raster, and linear networks. Comparison of CAD, coverage, and geodatabase models. A series of self-paced tutorials on CD.

GIS 105 Map and Compass/GPS
(0-3-1)

GIS 107, GIS 207, GIS 307, GIS 407 Seminar
(Hours to be arranged each term.)

GIS 205 GIS Data Integration
(1-3-2)

GIS 306 Geospatial Raster Analysis
(3-3-4)

GIS 316 Geospatial Vector Analysis I
(3-3-4)

GIS 322 Customizing the GIS Environment II
(3-3-4)
Use of VBA/OOP to modify GIS GUI environment. Introduction to programming with ArcObjects and the use/creation of forms for managing data input/display. Navigation of ArcGIS UML diagrams for the creation of customized functionality. Prerequisites: GIS 134 and MIS 115.

GIS 426 Geospatial Vector Analysis II
(3-3-4)
Advanced techniques for geospatial analysis. Use and creation of dynamic segmentation and geometric networks for geospatial analysis. Advanced topological relationships. Use and creation of subtypes, domains, relationship classes and validation rules. Professional map creation skills. Prerequisite: GIS 316.

GIS 432 Customizing the GIS Environment II
(3-3-4)
Advanced use of ArcObjects to create custom GIS applications. Use of CASE tools. Students will apply skills towards the solution of various geospatial mapping scenarios. Prerequisite: GIS 332.

GIS 446 GIS Database Development
(3-3-4)
Advanced geodatabase design. Study, use and creation of data models. Extensive use and creation of subtypes, domains, relationship classes and validation rules. Students will apply skills towards the solution of various geospatial mapping scenarios. Prerequisites: GIS 426 and GIS 446.

GIS 448 GIS Practicum
(Hours to be arranged each term.)

(GEOL) Geology

GEOL 201 Physical Geology
(3-3-4)
A brief systematic description of the major rock-forming minerals and the three major rock groups. The events of erosion, transportation and deposition of chemically altered and physically fragmented rocks and the resulting sculpturing of the earth's surface are discussed.

GEOL 107, GEOL 207, GEOL 307, GEOL 407 Seminar
(Hours to be arranged each term.)
(GME) Geomatics

GME 107, GME 207, GME 307, GME 407 Seminar
(Hours to be arranged each term.)

GME 134 Geographic Information Systems
(2-6-4)
Use of vector data, editing and querying of spatial and attribute data. Relating spatial and attribute data. Introduction to elements of map design. Shapefile-KML and CAD-GIS data conversion. Use of raster data, analyzing raster surfaces. Introduction to map algebra. Extensive use of ArcGIS® software.
Prerequisite: CIV 112 or GIS 103.

GME 161 Plane Surveying I
(3-3-4)
Fundamental concepts of plane surveying including theory of measurements, systematic and random errors. Distance and angle measurement using total stations and differential leveling. Calculation of bearings, azimuths, coordinates, area and traverse adjustments. Introduction to horizontal and vertical curve computations.
Corequisite: MATH 111.

GME 162 Plane Surveying II
(3-6-5)
Digital theodolites and data collectors, instrument testing and observational error analysis. Theory of leveling. Solar observation and computation. E.D.M. use and calibration. Field labs including solar observations, traversing, leveling and horizontal curve layout. Introduction to COGO software.
Prerequisites: GME 161, MATH 112.

GME 163 Route Surveying
(2-9-5)
Laboratory intensive project overview including horizontal and vertical control for preliminary location and construction surveys for a secondary road. Instruction in basic elements of horizontal and vertical route alignment and layout. Determination of earthwork quantities. CAD drafting of plan, profile and cross-sections.
Prerequisites: GME 162, GME 175, both with grade “C” or better.

GME 175 Computations and Platting
(2-6-4)
Coordinate geometry concepts with emphasis on manual solutions to standard surveying computations. Introduction to HP calculator use and programming. Introduction to map composition and platting using industry standard software.
Prerequisite: GME 161.
Corequisite: CIV 112.

GME 214 Boundary Law I
(3-0-3)
Statute law, common law, and legal principles relating to land boundaries. Each student will be required to use the county law library to research assigned cases.
Prerequisites: GME 161, WRI 121 or instructor consent.

GME 242 Land Descriptions and Cadastre
(3-0-3)
Real property descriptions and land record systems. Emphasis on interpreting and writing land descriptions, and introduction to researching records in various Land Information Systems.
Prerequisites: GME 161, GME 241, both with grade “C” or better.

GME 264 Digital Design for Surveying
(1-6-3)
Use of Carlson software to solve and plot assignments covering traverse calculations, horizontal and vertical curve alignments, profiles and earthwork volumes. Hand calculations will be made to supplement the computer solutions.
Prerequisites: CIV 112, GME 163 with grade “C” or better.

GME 297 Seminar
(Hours to be arranged each term.)

GME 299 Independent Studies
(Hour to be arranged each term.)

GME 324 Geomatics Computer Programming
(1-6-3)
Students develop Visual Basic programs and Excel spreadsheets to solve geomatics problems. Extensive use of Excel spreadsheets including developing custom functions and VBA extensions. Students are introduced to MS Access relational database, and develop a functioning geomatics database.
Prerequisites: GME 264, MIS 115.

GME 343 Boundary Surveys
(2-6-4)
Planning, organizing, calculating and applying field procedures for boundary and cadastral surveys. Writing deed descriptions; researching public record systems relative to property boundaries.
Prerequisites: GME 163, GME 242, both with grade “C” or better.

GME 351 Construction and Engineering Surveying
(2-6-4)
Organizing, planning and estimating costs for construction and engineering surveying projects. Field projects related to construction, layout of engineering works and site mapping.
Prerequisites: GME 163, GME 264.

GME 372 Subdivision Planning and Platting
(2-6-4)
Land use planning; governmental regulations as applied to subdivisions; subdivision planning, computations and preparation of subdivision plats.
Prerequisites: GME 242, GME 264, both with grade “C” or better.

GME 381 Advanced Cadastral Surveying I
(2-0-2)
History of United States land surveying and pertinent boundary law. Introduction to records research and boundary law principles; analysis of legal descriptions in deeds and other documents that transfer land title. Course utilizes BLM CFedS materials.
Prerequisite: Instructor permission, ability to perform standard surveying computations, an understanding of boundary law.

GME 395, GME 495 Cooperative Field Experience
(0-40-4)
An approved work program related to geomatics practice involving full-time meaningful activity. The employer, type of work and level of difficulty must be approved by the Geomatics Co-op Coordinator prior to the work period. Progress reports are prepared by the student during the work period and submitted for review. A comprehensive written report is required at the end of each co-op period. A co-op period may be three months for 2 credits or six months for 4 credits. A tuition fee is required for credits earned by co-op work experience.
Prerequisites: Completed freshman year and two terms residence.

GME 396, GME 496 Cooperative Field Practice
(0-40-2)
Three month, two credit hour version of GME 395 and GME 495.
GME 415 Advanced Road Design
(2-6-4)
Complete road design project including “L” and “P” line locations; horizontal and vertical curve calculations with consideration of stopping and sight distances; earthwork and mass diagram calculations; drainage and road construction materials.
Prerequisite: GME 351.

GME 425 Remote Sensing
(3-3-4)
Overview of remote sensing and photogrammetry; geometry of vertical aerial and satellite images including parallax and stereopairs. Analytical photogrammetry collinearity and coplanarity equations and orientation matrices. Students use Leica Photogrammetry Suite software to orient an image strip, create a DEM and orthorectify an image.
Prerequisites: MATH 252, PHY 222.

GME 434 Advanced Geographic Information Systems
(2-6-4)
Prerequisites: GME 134, MIS 275.
Corequisite: GME 452.

GME 444 Adjustment by Least Squares
(3-3-4)
Theory of the least squares method and error propagation; variances and co-variiances of observed, derived and adjusted quantities. Modeling of geomatics problems using different techniques of least squares. Linearization and iteration of nonlinear equations. Adjustment validation using hypothesis testing.
Prerequisites: MATH 254N, MATH 361.

GME 451 Geodesy
(4-0-4)
Size and shape of the earth. Geometry of the reference ellipsoid. Spherical, ellipsoidal and local coordinate systems. Coordinate transformations in 2-D and 3-D. Datums and datum conversion. Reduction of field observations to the ellipsoid. The geoid, orthometric heights, and leveling.
Prerequisite: MATH 254N.

GME 452 Map Projections
(2-3-3)
Overview of map projections used in cartography, and conformal map projections used in the geomatics profession. Emphasis on state plane coordinate systems and local map projections. Extensive use of Excel for analysis and computations.
Prerequisite: GME 451 with grade “C” or better.

GME 454 GNSS Surveying
(2-6-4)
Study of the theory and operation of the Global Positioning System and other Global Navigation Satellite Systems. Design of GPS networks in accordance with current standards and specifications. Laboratory exercises introduce the student to a variety of GNSS applications.
Prerequisites: GME 444, GME 451, both with grade “C” or better.

GME 455 GNSS Surveying for GIS
(2-6-4)
Study of the theory and operation of the Global Positioning System and other Global Navigation Satellite Systems. Design of GPS networks in accordance with current standards and specifications. Laboratory exercises introduce the student to a variety of GNSS applications.
Prerequisite: GME 451 with grade “C” or better.

GME 466 Boundary Law II
(3-0-3)
Evidence, professional liability, written and unwritten transfers of land ownership and title interests. A term paper is required of each student.
Prerequisite: GME 343 with grade “C” or better.
Corequisite: WRI 327.

GME 468 Geomatics Practicum
(1-9-4)
Students participate in projects which integrate spatial positioning (GPS, geodesy, adjustments), boundary law, and L/GIS applications. Student teams perform research, establish and adjust a control network, perform field mapping. Students prepare final reports and L/GIS products.
Prerequisites: GME 444, GME 452, GME 454, and GME 466.

GME 482 Advanced Cadastral Surveying II
(2-0-2)
Introduction to the complex process of evaluating field evidence and correlating with written records. Various scenarios discuss analysis aspects. Practical advice, legal concepts, and issues involved in evaluating corner evidence. Course utilizes BLM CFedS materials.
Prerequisite: GME 381 with grade “C” or better.

GME 483 Advanced Cadastral Surveying III
(2-0-2)
Introduction to water boundaries to create awareness of basic riparian issues. Subdivision of sections addresses normal subdivision lotted closing sections, elongated and fractional sections, and the three-mile method of section subdivision. Course utilizes BLM CFedS materials.
Prerequisite: GME 482 with grade “C” or better.

GME 497 CFedS
(4-0-4)
Provides academic credit for licensed professional land surveyors who successfully completed the rigorous BLM Certified Federal Surveyor (CFedS) examination.
Prerequisite: Successful completion of the CFedS examination.

GME 498 Workshop
(Hours to be arranged each term.)

GME 499 Independent Study
(Hours to be arranged each term.)

(HED) Health Education

HED 107, HED 207, HED 307, HED 407 Seminar
(Hours to be arranged each term.)

HED 240 Emergency Care and CPR
(2-0-2)
Comprehensive coverage of emergency care for a wide variety of injuries or illnesses. Course content includes artificial respiration and cardiopulmonary resuscitation, wounds, and bleeding; shock; burns; poisonings; bone, joint, and muscle injuries; cold- and heat-related injuries; alcohol and drug emergencies; and methods of transportation. Emphasis on victim examination, evaluation, and assessment tools and appropriate immediate and temporary care.

HED 246 Drugs and Alcohol Problems of Modern Society
(2-0-2)
Physiological and psychological effects of drugs, from caffeine to heroin. A brief study of neurophysiology and pharmacology. Investigation of the major drug classifications. Other topics include alcohol advertising, co-dependency, drug-affected babies, treatment and recovery, and legalization issues.
HED 250 Contemporary Health Issues
(2-0-2)
Topics related to the maintenance of a healthy lifestyle. Emphasis on lifestyle choices and behavior patterns that affect one's state of wellness. Topics include stress management; emotional, social, and spiritual well-being; nutrition, fitness and exercise; weight management; cardiovascular disease and cancer risk reduction; addictions; and other lifestyle-related health behaviors.

HED 260 Diet and Exercise for Lifetime Fitness
(2-0-2)
Practical concepts of nutrition and exercise, their role in disease risk, obesity, and weight control. Consumer concerns, advertising, fads, gimmicks. Fitness and dietary evaluations.

(HIST) History

HIST 101, 102, 103 History of Western Civilization
(3-0-3) SS
Development of Western civilization from early beginning to the present, with attention to political, economic, religious, social, and cultural factors. Courses need not be taken in sequence.
HIST 101: From the origins of human civilization to 1000 A.D.
HIST 102: From 1000 A.D. to 1789.
HIST 103: From 1789 to the present.

HIST 107, HIST 207, HIST 307, HIST 407 Seminar
(Hours to be arranged each term.) SS

HIST 201, 202, 203 U.S. History
(3-0-3) SS
The historical development of the United States, its economic, political, and social institutions from the colonial period to the present. Courses need not be taken in sequence.
HIST 201: Pre-Columbian and colonial times to 1840.
HIST 202: 1840, Westward expansion and the Civil War to 1899.
HIST 203: 1900 to present.

HIST 215 The American Western Experience
(3-0-3) SS
History of 19th century western America. Native American relations and the influence of the fur trappers, trail blazers, the railroad, the cattle industry and certain religious and ethnic groups on western development.

HIST 216 American Military History
(3-0-3) SS
Evolution of the conduct of war in the 20th century as a reflection of social, political, and technological developments. Course employs a case study approach focusing on a particular war of the 20th century. Wars studied may include World War I, World War II, and the Vietnam War.

HIST 224 Technology and the Ancient World
(3-0-3) SS
The interaction of technology and world civilization from earliest times to 1500 A.D. Topics include the development of agriculture, Greek and Roman engineering, and the technological roots of the Age of Discovery.

HIST 225 The Industrial Revolution
(3-0-3) SS
The economic and social roots of the Industrial Revolution, the technologies and scientific advances associated with it, and its impact on world civilization during the period 1500-1875.

HIST 226 Technology and the Modern World
(3-0-3) SS
The interaction of technological change and world civilization from 1875 to the present. Topics include the rise of industrial research, the origins and economic impact of mass production, and technological competition within the global economy.

HIST 227 The History of the Electric Grid
(3-0-3) SS
A field course focusing on the early human habitation, geology and pioneer history of the Black Rock Desert and its environs in northwestern Nevada, with an emphasis on the Applegate Emigrant trail to Oregon.

HIST 266 Natural/Cultural History of Eastern Oregon
(3-0-3) SS
A field course focusing on the volcanic geology of Eastern Oregon, early ranch and sheep industries and an emphasis on early Native American Settlement.

HIST 355 The Engineering Profession
(3-0-3) SS
The emergence and development of the engineering profession in Europe and North America. Topics include the changing nature of the profession's work and institutions, the role of engineering professional societies, the relationship between engineers, engineering technologists, and engineering technicians, and the place of engineers in society.
Prerequisite: WRI 123 or WRI 227.

HIST 356 A History of Energy
(3-0-3) SS
Study of the emphasis societies place on the development, safeguarding and exploitation of energy resources. Development of energy resources since the Industrial Revolution; exploitation of energy resources; oil shocks of the 1970s; glut of the 1980s; the modern energy paradigm.
Prerequisite: WRI 123 or WRI 227.

HIST 357 History of the Electric Grid
(3-0-3) SS
Study of the electric grid as a large technological system. Topics of study include the creation of the electric grid by Edison and others, rural electrification, the rise and fall of the utility consensus and the politics of deregulation.
Prerequisite: WRI 123 or WRI 227.

HIST 392 Modern Asia
(3-0-3) SS
China, Japan, and Korea from the early nineteenth century to the present. Emphasis on modern political movements and economic and cultural transformation.
Prerequisite: WRI 123 or WRI 227.

HIST 478 History of Oregon
(3-0-3) SS
An overview of the history of Oregon. The primary focus is the pattern of European settlement of Oregon, the origins and development of state government and the impact of commercial and industrial development.
Prerequisite: WRI 123 or WRI 227.
(HSC) Health Sciences

HSC 207 Seminar
(Hours to be arranged each term.)
Prerequisite: Health Sciences major or instructor consent.

HSC 407 Seminar
(Hours to be arranged each term.)

HSC 485 Research and Project Proposal
(3-0-3)
General aspects of conducting research with emphasis on biomedical approaches, constructing and testing hypotheses, interpreting and validating data, assessment of selected research paper, development and submission of a research proposal. Prerequisite: MATH 361, Health Sciences major or instructor consent.

(HUM) Humanities

HUM 107, HUM 207, HUM 307, HUM 407 Seminar
(Hours to be arranged each term.)

HUM 125 Introduction to Technology, Society and Values
(3-0-3)
An introduction to the relationship of economic, political, and social contexts to technological development with a focus on human values.

HUM 147 Introduction to Humanities I
(3-0-3)
Study of the ideas and values from the classical period which have profoundly influenced Western culture. Readings and discussion will focus on literature, philosophy, the arts, and religion.

HUM 148 Introduction to Humanities II
(3-0-3)
Study of the ideas and values from the Medieval to the Renaissance period which have profoundly influenced Western culture. Readings and discussion will focus on literature, philosophy, the arts, and religion.

HUM 149 Introduction to Humanities III
(3-0-3)
Study of the ideas and values from the Age of Enlightenment to the modern period which have profoundly influenced Western Culture. Readings and discussion will focus on literature, philosophy, the arts, and religion.

HUM 225 Contemporary Theater: Ashland Plays
(3-0-3)
Contemporary live drama viewed at Ashland Shakespearean Festival Theater. Review and analysis of original script prior to play experience. Post review and analysis of play performance, content; plot, character, diction, melody, spectacle. Course may be repeated for credit.

HUM 366 Engineering, Business and the Holocaust
(3-0-3)
Examines three questions: what happened during the Holocaust, who was responsible, and what happened to those responsible. Topics include Nazi philosophy, anti-Semitism, legislation, the camp system, German engineering and American business involvement, and aftermath. Prerequisite: WRI 122.

(JOUR) Journalism

JOUR 107, JOUR 207, JOUR 307, JOUR 407 Seminar
(Hours to be arranged each term.)

JOUR 211 Publications—Student Newspaper
(F,W,S)(2-3-3)
Practical experience and training in the elementary principles of newspaper writing, makeup, and layout. Members of this class will publish the student newspaper.

JOUR 224 News and Editorial Functions
(2-3-3)
Recommended for pre-journalism majors; open to non-majors. Survey and criticism of communication media; discussion of journalistic techniques.

JOUR 225 Introduction to Advertising
(2-3-3)
An overview of the principles, historical, and contemporary practice of advertising in society with emphasis on newspapers, broadcast and other media organizations; ethics and career opportunities.

JOUR 226 Production Methods
(2-3-3)
Recommended for pre-journalism majors; open to non-majors. Survey and criticism of communication media; discussion of journalistic techniques.

JOUR 311 Advanced Publications—Student Newspaper
(F,W,S)(1-3-3)
Advanced experience and training in principles of newspaper editing, reporting, writing, makeup, layout, and specialty areas. Members of this class will serve in the advanced areas of the newspaper staff. Prerequisite: Instructor consent.

(MGT) Management

MGT 107, MGT 207, MGT 307, MGT 407 Seminar
(Hours to be arranged each term.)

MGT 212 Fundamentals of Renewable Energy Management
(3-0-3)
Explores primary energy sources available for power generation. Includes cost comparisons of traditional sources (gas, coal, nuclear, hydro) and renewable sources (solar, geo-thermal, wind, bio-fuels, wave and tidal). Evaluates and benchmarks benefits of traditional versus renewable energy sources, long-term vs. short-term feasibility and strategic decision-making in energy generation and utilization. Prerequisites: ACC 201 and REE 201.

MGT 321 Operations Management I
(3-0-3)
Functions of the operations division within the organizational structure. Manufacturing and service organization trends. Capacity planning with forecasting and master scheduling. Introduction to Just-In-Time concepts. Prerequisite: BUS 215 or BUS 304.

MGT 322 Operations Management II
(3-0-3)
Supply chain management for service and manufacturing companies. Covers flows of goods and services through relationships with business customers, suppliers and partners. Students learn how to manage strategic, operational and tactical planning using best-known practices and efficient use of information systems. Evaluate and design effective supply chains. Prerequisite: MGT 321.

MGT 323 Operations Management III
(3-0-3)
Effective budgeting methods for industrial environments. Budget planning, formation and cost controls. Flexible budgets and expense management. Manufacturing/non-manufacturing costs and cost/contribution analysis. Prerequisite: ACC 203 with grade “C” or better.
MGT 345 Engineering Economy
(3-0-3)
Capital expenditure, economic life and replacement analysis based on net present value, periodic costs, internal and incremental rates of return. Coverage of compound interest, value flows, economic equivalences, depreciation, taxes and inflation.
Prerequisite: MATH 105 or MATH 111.

MGT 391, MGT 392 Co-op Field Practice
(0-9-3)
Credit will be given for an approved work program related to the student’s field of specialization for a continuous 10-week period. The employer and the type, level and difficulty of the particular job must be approved by the Management Department prior to employment.

MGT 445 Project Management
(2-3-3)
Advanced application of the Critical Path Method to organization and control of project implementation. Applications software will be used to evaluate project networks and to develop management reports.
Prerequisite: MGT 321.

MGT 461 Lean Management I
(3-0-3)
Lean thinking as applied to production and service operations. Kaizen, kaikaku, pull production and systems, value stream mapping and analysis.
Prerequisite: MGT 321.

MGT 462 Lean Management II
(3-0-3)
Overview course of Six Sigma management roles, responsibilities and terminology. Students will understand the tools and the phases of the DMAIC model and explore business cases to understand how Six Sigma techniques are applied to business.
Prerequisite: MATH 361.

MGT 463 Lean Management III
(3-0-3)
Prerequisite: MGT 462.

MIS 101 Word Processing Software Laboratory
(0-3-1)
Word processing lab using Microsoft Word software. Includes creating and editing documents, letters, Web pages, forms, labels, and newsletters, research papers, an index and table of contents.
Prerequisite: MATH 105 or MATH 111.

MIS 102 Spreadsheet Software Laboratory
(0-3-1)
Spreadsheet lab using Microsoft Excel software. Includes creating worksheets, charts, formulas, functions, what-if analysis, sorting, multiple worksheets, workbooks, templates, pivot tables and importing of data.

MIS 103 Presentation Graphics Software Laboratory
(0-3-1)
Presentation graphics lab using Microsoft PowerPoint software. Creation of presentations for use on paper, overhead transparencies, on a projection device, and Internet virtual presentations. Includes use of text, graphics, charts, and multimedia applications to create professional-looking presentations.

MIS 107, MIS 207, MIS 307, MIS 407 Seminar
(Hours to be arranged each term.)

MIS 115 Visual BASIC Programming
(3-3-4)
Computer concepts and problem solving methods in the Windows environment using Visual BASIC. Topics include algorithms, simple data types, condition and iterative structures, functions and procedures, and the program documentation.
Prerequisite: MATH 100 or instructor consent.

MIS 116 C++ Programming I
(3-3-4)
Computer concepts and problem solving methods using C++ programming language. Topics include: algorithms, simple data types, conditional and iterative structures, function definition, structured programming and documentation. Cannot be taken for graduation credit if student has completed CST 116.
Pre- or corequisite: MATH 111.

MIS 126 C++ Programming II
(3-3-4)
Solving complex problems using advanced features of the C++ language. Topics include function usage, pointer data type, dynamic memory allocation, string manipulation, and structure and union data types. Emphasis is on structured program design techniques. Cannot be taken for graduation credit if student has completed CST 126.
Prerequisite: MIS 116, with grade “C” or better or instructor consent.

MIS 130 Computer Organization
(3-3-4)
Introduces number systems, Boolean algebra, digital logic, computer arithmetic, instruction sets, memory, system software, and network organization and architecture. Laboratory exercises on digital logic, computer architecture, machine language and assembly language programming. Completion of a programming project.
Corequisite: MATH 100.

MIS 136 Object-Oriented Programming with C++
(3-3-4)
A study of object oriented programming with C++. Beginning and intermediate concepts are covered including classes, objects, member functions, overloading, inheritance, polymorphism, templates, and virtual functions. This course prepares students with a strong C background for upper-division coursework using C++. Cannot be taken for graduation credit if student has completed CST 136.
Prerequisite: MIS 126, with grade “C” or better.

MIS 215 Business Application Programming
(3-3-4)
Object-oriented and/or procedural languages employed with an emphasis on structured design, user interface design and error processing. Utilizing advanced language elements and program structures to integrate software development with data management.
Prerequisites: MIS 115 and MIS 275 with grade “C” or better, or instructor consent.

MIS 217 Health Care Systems and Policy
(3-0-3)
This course will explore the U.S. Health System focusing on its historical development, current configuration and possible future direction. Included will be the study of health system development, key influencers, accessibility, financing, changing components and the effects the system has on patients, providers, finance, employers, government and insurers. Particular attention will be paid to the future direction of healthcare and what parts of the system are likely to change.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science
For more information see page 38.
MIS 225 Business on the Internet
(3-3-4)
The role of the Internet and related technologies in modern business and electronic commerce. Hands on course for creating dynamic Web pages. Emphasizes Internet marketing and Web page editor with hypertext markup language (HTML) with some exposure to Java Script.

MIS 255 Health Informatics Concepts and Practices
(3-0-3)
The discipline of health informatics is introduced, including history, knowledge of health informatics, data management, vocabularies, standards and tools as applied in the support of health care delivery. The course provides foundation knowledge and understanding of the impact of information technology on the health care industry and vice versa. Particular attention is paid to the design, usage and acceptance of information technology applications. This course introduces students to the concepts and practices of health informatics.

MIS 256 Hardware/Software Integration
(3-3-4)
An overview of personal computer technology: comparing components such as display, CPU, memory units and peripherals. Setting standards for selecting, maintaining and supporting automated business information systems. Relationship of systems and applications software to available system software, hardware and selected peripherals. In-depth software comparison, user rating, security and error recovery techniques.

MIS 272 Fundamentals of Networking I
(3-3-4)
Networking communications and essential LAN building blocks including network communications, Packet analysis, IP addressing, switches, routers, WAN technology, OSI model, client server applications, introduction to network security.
Prerequisite: MIS 256 with grade “C” or better.

MIS 273 Fundamentals of Networking II
(3-3-4)
Introduces the fundamental skills required to install, configure and manage a network operating system. Topics covered include installing and configuring Active Directory, domain controllers, DNS, users and group definition, print queues, network roles and services and application servers.
Prerequisite: MIS 272.

MIS 275 Introduction to Relational Databases
(2-3-3)
The relational model, DBMS functions, administration, design methodology, normalization, QBE and SQL. Hands-on design, development and use of a database system using the Microsoft Access software including queries, updates, reports, forms, macros and application systems.

MIS 311 Introduction to Information Systems
(3-0-3)
Prerequisite: WRI 121.

MIS 312 Systems Analysis I
(4-0-4)
Planning and Analysis phases of Systems Development Life Cycle. Focus on software development life cycles; entity relationships, data flow diagrams, prototyping and other forms of data or system modeling. Designing, selecting and installing new systems for end users. Includes cost/benefit and value-added evaluations.
Prerequisites: MIS 275 and MIS 311.

MIS 315 Computer Software Techniques
(3-0-3)
Lectures are divided between data structures and operating systems. Data structures section involves data representation, B-trees, graphs, and files. Operating systems section involves process, memory, and file management as related to UNIX. Cannot be taken for graduation credit if student has completed CST 313.
Prerequisite: MIS 126 with grade “C” or better.

MIS 322 Systems Analysis II
(3-3-4)
Prerequisites: MIS 215 and MIS 312, both with grade “C” or better.

MIS 341 Relational Database Design I
(3-3-4)
A comprehensive study of SQL and PL/SQL using the Oracle relational database management system. Hands-on training will include the use of PL/SQL and SQL*PLUS, database creation, data queries, view definitions and use, operators and functions, triggers, calculation, indexing, cursors and data manipulation.
Prerequisites: CST 311 or MIS 275, and MATH 111 with grade “C” or better.

MIS 342 Relational Database Design II
(3-3-4)
Construct graphical end-user interfaces for scalable, high-performance Internet applications. Covers building, testing, debugging and deploying interactive Internet applications that use an enterprise level Database Management System. Develops experience with the System Development Life Cycle (SDLC) for web/database integration for application development. Develop understanding of Software as a Service (SaaS) and how to apply solutions to solve business problems.
Prerequisite: MIS 215 and MIS 341, both with grade “C” or better.

MIS 343 Relational Database Design III
(2-3-3)
Install, create and maintain an Oracle database. Oracle database architecture and component interactions. Implement, configure and monitor an operational database in an effective manner including performance monitoring, database security, user management and backup/recovery techniques.
Prerequisite: MIS 342.

MIS 344 Business Intelligence
(2-3-3)
Develop analytic solutions to gain functional understanding of Business Intelligence to solve business problems. Covers the development of Crystal Reports and Dash-boarding tools to develop reporting and interface solutions for business.
Prerequisite: MIS 341 with grade “C” or better.
Corequisite: MIS 322.

MIS 345 Health Care Information Systems Management
(3-0-3)
Information systems within healthcare organizations are examined. Business, clinical, and healthcare delivery processes are identified as they relate to data acquisition and information systems. Key issues confronting design, organization and management of healthcare systems are identified, examined, and solutions are explored and developed.
Prerequisites: BUS 317 and MIS 217.
MIS 351 Enterprise Network Design I
(3-3-4)
High-level design of primary network architectures employed in modern business networks. Design logical and physical models to create the network documentation required for modern information systems. Focus on the management, performance, scalability and reliability of the central data centers. Prerequisites: MIS 273, MIS 312 and WRI 227.

MIS 352 Enterprise Network Design II
(3-3-4)
Focus on management responsibilities inherent in enterprise networks. Includes project labs using network infrastructure to implement design goals and team projects. Prerequisite: MIS 351.

MIS 357 Information and Communication Systems in Health Care
(2-3-3)
Addresses the role of computer-based information and communications systems in patient care and health care administration, including hands-on experience with the acquisition, storage and use of information in the electronic medical record and systems such as PACS, lab and pharmacy systems and computerized provider order entry (CPOE). Prerequisite: MIS 351.

MIS 375 Decision Support Systems
(2-3-3)
Use of personal computer application programs for analysis and reporting, problem solving and decision assistance. Prerequisites: MIS 102, MATH 361 and MATH 371.

MIS 390, 490 Co-op Field Experience
(Hours to be arranged each term.)
An approved work program related to the student’s field of specialization for a continuous three-month or six-month period. The employer type, level, and difficulty of the particular job must be approved by the student’s advisor prior to the employment period. A written comprehensive report of activities must be submitted during the following term of residence. Prerequisites: All MIS 100 and 200 level courses.

MIS 405 Reading and Conference
(Hours to be arranged each term.)

MIS 408 Workshop
(Hours to be arranged each term.)

MIS 414 Information Systems Development
(2-3-3)
Review of systems analysis. Tools, techniques, and reference sources used to research, configure and justify the hardware, software, staff, and facilities required for a computer system. Changeover, file conversion and testing. Post-installation audit, backup, security and privacy. Prerequisites: MIS 312 and a programming language.

MIS 445 Legal, Ethical and Social Issues in Health Care Technology
(3-0-3)
Legal, ethical, and social issues in health care, especially as they impact systems design, development, use, and management will be examined. Prerequisites: MIS 345.

MIS 479 Current Topics in Information Technology
(3-0-3)
Advanced topics focusing on special interests and newly developed technology in IT. Concentration on a current subject such as client/server architecture, networking, telecommunications, database technology, programming, the Internet, ethics, security and privacy of information. Prerequisites: MIS 272, MIS 275 and WRI 227.

MIS 496 Senior Project Management
(3-3-4)
Focuses on project management. Includes best-known industry practices, as well as planning, organizing and managing resources to bring about successful completion of specific project goals and objectives. Produces formal proposal for Senior Project. Prerequisites: BUS 356, MIS 312, WRI 327. At least one programming class with grade “C” or better and all junior-level courses.

MIS 497 Senior Project II
(1-6-3)
Senior project students will plan, develop and carry through to completion a management information systems project for a client they select. Formal proposal, progress reports and project demonstration/presentation. The instructor serves as the student’s consultant. Prerequisite: MIS 496 with grade “C” or better.

MIS 498 Senior Project III
(1-6-3)
Senior students plan, develop and complete a project for a client or an independent research project. Periodic progress reports and presentations required. Instructor functions as a consultant. Deliver final project. Prerequisite: MIS 497 with grade “C” or better.

(MFG) Manufacturing Engineering Technology

MFG 101 Introduction to Manufacturing
(2-3-3)
An introduction to the manufacturing engineering technology discipline. Orientation to the use of personal computers. Instruction in problem solving and laboratory procedures emphasized. Laboratory provides demonstration and practice in a variety of manufacturing equipment and procedures.

MFG 103 Introductory Welding Processes
(2-3-3)
Applications of welding in modern industry. Topics include: Oxyacetylene welding and cutting, shielded metal arc welding, gas tungsten arc welding, gas metal arc welding, and robotic welding.

MFG 107, MFG 207, MFG 307, MFG 407 Seminar
(Hours to be arranged each term.)

MFG 112 Introduction to Manufacturing Processes
(3-0-3)

MFG 120 Manufacturing Processes I
(2-6-4)
An introductory course in metal removal processes emphasizing drilling, milling, and lathe processes. Includes tool bit grinding. Emphasis on production speeds and feeds. Prerequisites: MATH 100, MET 111.

MFG 204 Data Management
(2-0-2)
Current topics in data acquisition and management.

MFG 220 Manufacturing Processes II
(2-3-3)
Advanced concepts in material removal. Turning, milling, shaping, and drilling. Cutting tools and cutting requirements. Prerequisites: MET 160, MET 241, MFG 120.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFG 223</td>
<td>Casting and Molding Processes</td>
<td>(3-3-4)</td>
<td>Casting and molding processes including: pattern making, casting and molding methods, mold and core making, pouring, cleanup, sand conditioning and testing, quality considerations and economic factors. Prerequisites: ENGT 115, MET 160.</td>
</tr>
<tr>
<td>MFG 245</td>
<td>Electronics Manufacturing</td>
<td>(3-0-3)</td>
<td>Processes and materials specific to the production of printed circuit board and integrated circuit components. Topics include surface mount technology, vacuum system theory, photolithography, etching and deposition processes, microbonding, and component packaging. Prerequisites: CHE 101, MET 112.</td>
</tr>
<tr>
<td>MFG 275</td>
<td>CAD for Manufacturing</td>
<td>(2-3-3)</td>
<td>Computer aided drafting for manufacturing. Presents equipment and programs from the user's perspective. Topics include construction principles, input schemes, command structures, and data management. Prerequisite: One computer language.</td>
</tr>
<tr>
<td>MFG 295</td>
<td>Individual Studies</td>
<td>(Hours to be arranged each term.)</td>
<td></td>
</tr>
<tr>
<td>MFG 298</td>
<td>Reading and Conference</td>
<td>(Hours to be arranged each term.)</td>
<td></td>
</tr>
<tr>
<td>MFG 299</td>
<td>Laboratory Practice</td>
<td>(Hours to be arranged each term.)</td>
<td></td>
</tr>
<tr>
<td>MFG 313</td>
<td>Manufacturing Analysis and Planning</td>
<td>(3-0-3)</td>
<td>Analysis and planning of manufacturing methods, procedures and equipment. Includes designing for manufacturing efficiency, tolerance analysis, equipment and resource allocation and scheduling. Prerequisites: ACC 333 or MGT 321 or MFG 120.</td>
</tr>
<tr>
<td>MFG 314</td>
<td>Geometric Dimensioning and Tolerancing</td>
<td>(2-3-3)</td>
<td>The study and application of ANSI and ISO geometric dimensioning and tolerancing principles and practices relative to product design and manufacturing operations. Prerequisites: MATH 112, MET 241.</td>
</tr>
<tr>
<td>MFG 315</td>
<td>Geometric Dimensioning and Tolerancing Laboratory</td>
<td>(0-3-1)</td>
<td>Laboratory exercises using parts that have geometric drawing requirements. Corequisite: MFG 314.</td>
</tr>
<tr>
<td>MFG 317</td>
<td>Machine Element Design</td>
<td>(3-0-3)</td>
<td>Stress calculations and design of machine elements for general applications. Theories of failure, fatigue considerations, and material selection of shafts and associated parts, gear and belt drives, bearings, power screws, threaded fasteners, riveting, welding, and springs. Prerequisites: ENGR 213 or ENGT 231 and MET 241, or instructor consent.</td>
</tr>
<tr>
<td>MFG 325</td>
<td>Principles of Metrology, Machining and Welding</td>
<td>(3-3-4)</td>
<td>Measuring techniques using precision devices. Metal removal processes such as lathe, mill, and grinder. Correct use of tools and cutting parameters. Basic welding processes and theory.</td>
</tr>
<tr>
<td>MFG 326</td>
<td>Solid Mechanics</td>
<td>(3-0-3)</td>
<td>Concentrated study of statics and strength of materials comprising the principles of equilibrium, strain-stress relationships, and analysis of internal stresses for different loading systems. Prerequisite: MATH 112.</td>
</tr>
<tr>
<td>MFG 331</td>
<td>Industrial Controls</td>
<td>(2-3-3)</td>
<td>Fundamentals of control of manufacturing processes. Applications of relay logic, input and output devices, and programmable logic controllers (PLC). Design of complete control circuits, selection of components, and cost estimation. PLC programming for discrete event control and for analog applications. Prerequisite: MATH 326.</td>
</tr>
<tr>
<td>MFG 341</td>
<td>Manufacturing Group Project</td>
<td>(1-6-3)</td>
<td>Development of a product by a group of manufacturing students working together. This includes creating or modifying the design of the product, writing operation sheets, specifying materials, tools and equipment needed, design of special tooling, setup and operation of equipment and actual manufacturing of the project. Prerequisite: MFG 342.</td>
</tr>
<tr>
<td>MFG 342</td>
<td>Numerical Control Programming</td>
<td>(2-3-3)</td>
<td>Introduction to manual numerical control programming. Includes interpreting part drawings, process planning, machining setup and sequence. Program debugging and introduction to tool path simulation and computer-aided programming tools. Prerequisites: MATH 112, MFG 120, MET 241.</td>
</tr>
<tr>
<td>MFG 344</td>
<td>Design of Manufacturing Tooling</td>
<td>(2-3-3)</td>
<td>Using material from prior courses students work in individual and team design projects. Design and analyze a variety of manufacturing fixtures, jigs, molds, and stamping dies. Prerequisites: MET 241, MFG 343.</td>
</tr>
</tbody>
</table>
MFG 351, MFG 352, MFG 353
Microelectronics Manufacturing Processes I, II, III
(3-0-3)
A three term sequence providing in-depth theory of the processes used in the manufacture of electronic components. Primary topics include integrated circuits, printed circuits, electronic assembly. Vacuum system theory, photolithography, process specific chemistry, etching and deposition processes, and surface mount technology. Prerequisites: For MFG 351–CHE 101, PHY 202.

MFG 404 Co-op Field Practice
(Terms and hours to be arranged with approval of the curriculum coordinator.)
An approved work program related to the student's field of specialization for a continuous three-month period. The employer and the type, level, and difficulty of the particular job must be approved prior to the employment period. A written comprehensive report must be submitted during the following term of residence.

MFG 405 Reading and Conference
(Hours to be arranged each term.)

MFG 408 Workshop
(Hours to be arranged each term.)

MFG 415 Finishing Methods
(2-0-2)
Review of material finishing technologies with focus on functional requirements of final product, life-cycle environmental considerations, and manufacturing technologies for material finishing. Prerequisite: MET 160.

MFG 420 Manufacturing Processes III
(3-0-3)
Introduction to less conventional and recently developed manufacturing processes and materials. Emphasis on understanding unique characteristics, advantages, limitations, and applications. Analysis required for selection of appropriate materials and processes. Examples of computer programs that aid the selection process. Prerequisites: MATH 112; and MFG 220 or MFG 325; and PHY 201/PHY 221.

MFG 425 Plastic Manufacturing Processes
(2-3-3)
Fundamentals of polymer science and plastic manufacturing methods. Introduction to the affect of chemistry and morphology of plastics on material selection, product design, and process design. Emphasis is on thermoplastic processes such as injection molding. Prerequisites: MET 160 and MET 375, or instructor consent.

MFG 428 Manufacturing Engineering Certification
(1-0-1)
Students are required to take the Certified Manufacturing Engineer Exam or Certified Manufacturing Technician Exam offered by the Society of Manufacturing Engineers. Prerequisite: Graduating senior.

MFG 445 Plant Layout and Handling Systems
(3-0-3)
In-depth study of facilities planning for manufacturing engineers. Focus is on layout optimization algorithms and applications, work cell design, warehouse design, materials handling systems, process/product/material/labor cost estimates and evaluations, and agile manufacturing. Prerequisites: MFG 112, MFG 313.

MFG 447 Lean Manufacturing
(2-3-3)
Introduction of principles, techniques and skills of lean manufacturing. Process optimization and quality improvement for manufacturing. Plant layout, design and job scheduling. JIT skills, such as Kaizen, Kanban, value added analysis and one piece flow to reduce inventory and waste. Prerequisites: MFG 313 or MFG 333.

MFG 453 Automation and Robotics in Manufacturing
(2-3-3)
Study of the appropriate level of manufacturing automation based upon economics and productivity. Discussion of robotics and a study of automated manufacturing including automatic machine design and material handling. Prerequisite: Senior standing in MET or MfgET or permission of instructor.

MFG 454 Thermal Systems for Manufacturing
(3-0-3)
Fundamentals of thermal energy analysis, including introduction to thermodynamics and heat transfer. Emphasis is on solving manufacturing related problems in thermal process control and analysis. Prerequisite: MATH 252.

MFG 456 Materials Science
(3-0-3)
Study of the relationship of a material's structure to its properties. Materials studied include nonferrous metals, polymers, ceramics, composites, and electronics materials. Prerequisite: MFG 420.

MFG 461 Senior Project I
(1-6-3)
The first term of the three-term comprehensive capstone manufacturing project. This term concentrates on the development and presentation of a formal project proposal, followed by early stages of project development. Prerequisites: MFG 313, MFG 331, MFG 342 or instructor consent.

MFG 462 Senior Project II
(0-9-3)
The second term of a three-term project. This term concentrates on material acquisition and process development. Prerequisite: MFG 461.

MFG 463 Senior Project III
(0-9-3)
The final term of a three-term project. Process refinement and production of the product agreed to during the proposal phase. Requires formal reporting and presentation. Prerequisite: MFG 462.

MFG 465 Advanced Welding Methods
(3-0-3)
High energy density, solid state, and plastics welding processes. Welding metallurgy supports, metal combination choices and solutions to typical welding problems. Codes, procedure qualification, welding design and nondestructive testing. Prerequisites: MET 160, MFG 103.

MFG 503 Thesis
(Variable credit 1-16)
Course may be repeated for credit.

MFG 507 Seminar
(1-0-1)
Course may be repeated for credit.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
MFG 521 The Manufacturing Management Team in the Global Enterprise
(3-0-3)
Concepts and theories needed to understand the management of people, work groups, and organizations in a global environment. Exploration of cultural differences, organizations, communication and business relationships; strategic thinking in a global context, and international e-communications. Emphasis on contemporary case studies regarding the operational problems facing the international firm.

MFG 522 Manufacturing Business Philosophies
(3-0-3)
Contemporary world class manufacturing concepts and philosophies including Just-in-Time (JIT) applications for manufacturing and inventory management; methods and practices of total quality control in manufacturing; and continuous improvement techniques in manufacturing. Focus on contemporary cases in global manufacturing.

MFG 523 Capitalization Principles for Manufacturing
(3-0-3)
Theory and concepts of capitalization for manufacturing assets: land, buildings, and equipment. Historical cost for valuing an asset. Net income, real and tax depreciation, and timing the disposal or exchange of assets. Exploration of capitalization of cost, post-acquisition asset costs, interest capitalization and expense, asset impairments, and multinational capital budgeting and financial management.

MFG 524 Project and Budget Planning for Manufacturing
(3-0-3)
Exploration of the theories, tools, and techniques needed to effectively plan and manage manufacturing projects and budgets. Development of the characteristics of project plans including scope of work statements, work breakdown structure, project schedules, schedule and budget metrics, and project change cost analysis. Core topics include cost, time, and resource estimation, management and budgeting.

MFG 525 International Economics for Manufacturing
(3-0-3)
Exploration of international economics. Impact on manufacturing industries. Focus on the foundations of international trade including classical and modern theories of production and industrial organization. Free trade policies; foreign competition; direct foreign investment, fiscal and monetary policy; tariffs, quotas, and subsidies. International monetary market on production, and anti-globalization politics. Concentration on contemporary cases in manufacturing. Prerequisites: ECO 201N and ECO 202N or equivalent (See instructor).

MFG 526 Engineering Mechanics
(3-0-3)

MFG 527 Thermal Processes and Technology in Manufacturing
(3-0-3)

MFG 528 Design Technology for Manufacturability
(3-0-3)
Cutting costs and improving productivity. Managing the manufacturing supply chain. Reducing time to market. Establishing core competencies and maintaining vital corporate best practices. The role of standards and lean manufacturing in design.

MFG 529 Product Life Software
(3-0-3)
Use of high-end enterprise-wide software products for integrating design, automating the workflow, and comprehensively controlling security. Revision management over all types of data. Creating document links. Leveraging subject matter experts across the extended enterprise.

MFG 530 Advanced Manufacturing
(3-0-3)
Introduction of concepts, principles, techniques, strategies and applications related to demand forecasting, production planning, performance measurements, quality control, inventory control and continuous improvement for manufacturing systems.

MFG 531 Quality Concepts and Philosophies
(3-0-3)

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP - Humanities Performance SS – Social Science. For more information see page 38.
MFG 595 Selected Graduate Topics in Manufacturing
(3-0-3)
Manufacturing related topics in engineering science and design. Manufacturing related topics in software and computer integration. Manufacturing related topics in materials and processing technology. Manufacturing related topics in business and management. Course may be repeated for credit.

MFG 596 Selected Topics in Engineering Science and Design Technology
(3-0-3)
Manufacturing related topics in engineering science and design. Course may be repeated for credit.

MFG 597 Selected Topics in Manufacturing Software and Computer Integration
(3-0-3)
Manufacturing related topics in software and computer integration. Course may be repeated for credit.

MFG 598 Selected Topics in Advanced Manufacturing Materials and Processes Technology
(3-0-3)
Manufacturing related topics in materials and processing technology. Course may be repeated for credit.

MFG 599 Selected Topics in Business, Financial and Management Processes
(3-0-3)
Manufacturing related topics in business and management. Course may be repeated for credit.

(MATH) Mathematics

(MATH 101 Accelerated Algebra
(70, 100, 111)(4-0-4)
An accelerated algebra course with topics ranging from Elementary Algebra (MATH 70) to College Algebra (MATH 111). For entering students with good high school algebra backgrounds. All students will start in Elementary Algebra, and may receive credit for one of MATH 70, MATH 100, or MATH 111, depending on individual level of achievement. An additional self-support course fee is required.

MATH 102 Accelerated College Algebra/Trigonometry
((W)(4-0-4)
An accelerated algebra/trigonometry course for exceptionally qualified students. All students will start with College Algebra (MATH 111), and may, with extra effort be able to complete Trigonometry (MATH 112). Depending on individual accomplishment, students will receive credit for either MATH 111 or MATH 112 but not both. Prerequisite: MATH 100 or MATH 111 both with grade “B” or better.

MATH 105 Collegiate Mathematics
(F, W, S)(4-0-4)
A variety of modern mathematical topics based on contemporary applications. Topics include combinatorics, probability, statistics, finance, matrices, and logarithmic and exponential functions. Prerequisite: Intermediate Algebra with grade “C” or better.

MATH 107, MATH 207, MATH 307, MATH 407 Seminar
(Hours to be arranged each term.)

MATH 111 College Algebra
(F, W, S)(4-0-4)
Study of functions including graphs, operations and inverses. Includes polynomial, rational, exponential, logarithmic functions and their applications, and systems of equations. Prerequisite: MATH 100 with grade “C” or better, or equivalent.

MATH 111A, MATH 111B College Algebra
(111A FW; 111B WS)(1-2-2)
For students requiring Math 111 but desiring to learn the material at a slower pace. Math 111 content covered upon completion of MATH 111A and MATH 111B. Prerequisite: For MATH 111A–Math 100 with grade “C” or better, or equivalent. Prerequisite: For MATH 111B–Math 111A with grade “C” or better.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science.
For more information see page 38.
MATH 112 Trigonometry
(F,W,S)(4-0-4)
The trigonometric functions and their applications. Topics include graphs, identities, trigonometric equations, vectors, and complex numbers.
Prerequisite: MATH 111 with grade "C" or better, or equivalent.

MATH 211 Fundamentals of Elementary Mathematics I
(F,W,S)(4-0-4)
This is the first course in the mathematics sequence for prospective elementary teachers. Topics include problem solving strategies, set theory, numeration, computational algorithms for whole numbers and integers, estimation, relations; use is made of calculators and manipulatives.
Prerequisite: MATH 100 or equivalent with grade "C" or better.

MATH 212 Fundamentals of Elementary Mathematics II
W(4-0-4)
This is the second course in the mathematics sequence for prospective elementary teachers. Topics include decimals, percents, ratios and proportions, real numbers, probability and statistics; use is made of calculators and manipulatives.
Prerequisite: MATH 211 with grade "C" or better.

MATH 213 Fundamentals of Elementary Mathematics III
S(4-0-4)
This is the third course in the mathematics sequence for prospective elementary teachers and covers basic geometry. Topics include geometric shapes and their properties, measurement, congruence and similarity, and coordinate and transformational geometry; use is made of calculators and manipulatives.
Prerequisite: MATH 211 with grade "C" or better.

MATH 221 Introduction to Computational Software
(2-0-2)
Solve applied problems involving formulas, functions, summation and iteration using Excel and MATLAB. Use built-in functions and graphing capabilities of MATLAB and Excel. Do vector and matrix calculations and write function files using MATLAB. Write and execute macros in Excel.
Prerequisite: MATH 112.

MATH 243 Introductory Statistics
(4-0-4)
Descriptive statistics, numerical and graphical presentation of data, estimation and margin of error, hypothesis testing, correlation; interpretation of statistical results. Cannot be taken for graduation credit by students who have taken MATH 361.
Prerequisite: MATH 100 or instructor's consent.

MATH 251 Differential Calculus
(F,W,S)(4-0-4)
Theory, computational techniques and applications of the derivative.
Prerequisite: MATH 112 with grade "C" or better, or equivalent.

MATH 252 Integral Calculus
(F,W,S)(4-0-4)
Computational techniques for and applications of the definite and indefinite integrals.
Prerequisite: MATH 251 with grade "C" or better.

MATH 253N Sequences and Series
(4-0-4)
Indeterminate forms and improper integrals. Infinite sequences and series, convergence, power series, Taylor series and applications. This course replaces MATH 254.
Prerequisite: MATH 252 with grade "C" or better.

MATH 254N Vector Calculus I
(F,W,S)(4-0-4)
Vectors, vector functions, and curves in two and three dimensions. Surfaces, partial derivatives, gradients, and directional derivatives. Multiple integrals using rectangular and other coordinate systems. Physical and geometric applications.
Prerequisite: MATH 252 with grade "C" or better.

MATH 261 Introduction to Linear Algebra
(3-0-3)
Matrices and matrix operations, systems of linear equations, vectors in a geometric setting, projections, dot products, cross products, inverse matrices, determinants, linear transformations, Eigenvalues, Eigenvectors. Use of MATLAB or equivalent CAS and/or a graphing calculator required. Pre- or corequisite: MATH 251 or instructor consent.

MATH 311 Introduction to Real Analysis
(4-0-4)
A one term stand-alone course on topics in real analysis, covering properties of real numbers, completeness axiom, continuity, convergence of sequences and series of numbers, convergence of sequences and series of functions. Emphasis will be placed on proofs.
Prerequisites: MATH 253N and MATH 327, both with grade "C" or better.

MATH 321 Applied Differential Equations I
(F,W,S)(4-0-4)
The first in a two term sequence on the solutions of ordinary differential equations. Introduction to differential equations, first and second order equations with applications.
Prerequisite: MATH 252 with grade "C" or better.

MATH 322 Applied Differential Equations II
(4-0-4)
The second in a two term sequence on the solutions of ordinary differential equations. Introduction to systems of equations, the Laplace transform and series solutions.
Prerequisites: MATH 321 and MATH 341.

MATH 327 Discrete Mathematics
(F,S)(4-0-4)
Introduction to proof and mathematical abstraction. Topics include sets, set operations, functions, relations, sequences, series, recurrence relations, mathematical induction, equivalence relations.
Prerequisites: MATH 252, or junior standing and MATH 111, both with grade "C" or better.

MATH 341 Linear Algebra I
(3-0-3)
The study of vectors and matrices in Euclidean space, their geometric interpretations and application to systems of equations. Includes linear independence of vectors, basis and dimension, introduction to linear transformations, eigenvalues and eigenvectors, diagonalization, determinants.
Prerequisite: MATH 251 with grade "C" or better.

MATH 342 Linear Algebra II
(3-0-3)
A continuation of the topics of MATH 341 to the setting of abstract vector spaces. Includes the study of orthogonality, inner product spaces, eigenvalues and eigenvectors, matrix decompositions and a more advanced study of linear transformations.
Prerequisite: MATH 341.
MATH 362 Statistical Methods II
Prerequisite: MATH 111 or instructor’s consent.

MATH 351 Fundamentals of Abstract Algebra
(3-0-3)
Introduction to group theory and algebraic structures with applications.
Prerequisite: MATH 327 with grade “C” or better.

MATH 346 Number Theory
(3-0-3)
A proof-based course in the theory of the integers, including divisibility, primes, Euclid’s Algorithm, Euler’s Theorem and an introduction to algebraic structures. The course also includes applications of number theory such as RSA encryption.
Prerequisite: MATH 327 with grade “C” or better.

MATH 347 Fundamentals of Abstract Algebra
(4-0-4)
Introduction to group theory and algebraic structures with applications.
Prerequisites: MATH 254N, MATH 327, both with grade “C” or better.

MATH 354 Vector Calculus II
(4-0-4)
Review of vector functions, space curves, gradients, and directional derivatives. Introduction to vector analysis: vector fields, divergence, curl, line integrals, surface integrals, conservative fields, and the theorems of Gauss, Green and Stokes with applications to force, work, mass, and charge.
Prerequisite: MATH 254N with grade “C” or better.

MATH 361 Statistical Methods I
(F,W,S)(4-0-4)
Descriptive statistics, experimental design, introduction to probability, common probability distributions, random variables, sampling distributions, hypothesis testing and confidence intervals for means using one and two samples, simple linear regression.
Prerequisite: MATH 111 or instructor’s consent.

MATH 362 Statistical Methods II
(W,S)(4-0-4)
Review of inferential statistics, analysis of variance one factor and two factor, simple and multiple regression, analysis of categorical data using tests and confidence intervals for proportions and chi-square tests, correlation, goodness of fit, logistic regression, non-parametric tests. Data sets used will come from various fields including: business, psychology, biology, environmental science, engineering, manufacturing and communication.
Prerequisite: MATH 361 or instructor consent.

MATH 371, MATH 372 Finite Mathematics and Calculus I, II
(4-0-4)
Linear functions, matrices, linear programming, mathematics of finance, derivatives and their applications. The integral and its applications, and calculus of several variables.
Prerequisite: For MATH 371–MATH 111 with grade “C” or better.
Prerequisite: For MATH 372–MATH 371 with grade “C” or better.

MATH 421 Applied Partial Differential Equations I
(4-0-4)
Prerequisite: MATH 322.

MATH 422 Applied Partial Differential Equations II
(4-0-4)
The second course in a three term sequence in applied partial differential equations. Introduction to solution techniques using eigenvalues and eigenfunctions. Presentation of eigenfunctions which form orthogonal bases such as Bessel functions and Legendre polynomials.
Prerequisite: MATH 421.

MATH 423 Applied Partial Differential Equations III
(4-0-4)
Prerequisite: MATH 422.

MATH 425 Vector Analysis
(3-0-3)
Operations on vectors including dot product, cross product, curl and differentiation; tangent and normal vectors; divergence with applications.
Prerequisite: MATH 254N.

MATH 451 Numerical Methods I
(4-0-4)
Computer applications of matrix methods, iterative solutions of equations, and systems of equations, polynomial interpolation and curve fitting, numerical differentiation and integration.
Prerequisites: MATH 252, MATH 341 or MATH 261, and a programming language.

MATH 452 Numerical Methods II
(4-0-4)
Prerequisites: MATH 451 and MATH 321.

MATH 453 Numerical Methods III
(4-0-4)
Prerequisites: MATH 421 and MATH 452.

MATH 465 Mathematical Statistics
(W,S)(4-0-4)
Counting techniques, probability, discrete and continuous random variables and distribution functions, joint probability distributions; expected value, variance and covariance; decision making.
Prerequisite: MATH 254N.

(MECH) Mechanical Engineering
MECH 107, MECH 207, MECH 307, MECH 407 Seminar
(Hours to be arranged each term.)

MECH 160 Materials I
(2-3-3)
Survey of materials used in industry and their physical and chemical principles as they relate to structure, properties, corrosion, and engineering applications. Major consideration given to metal alloys. Introduction to polymers, ceramics and composites included.
Prerequisite: CHE 221 or equivalent.
MECH 304, MECH 404 Co-op Field Practice
(Terms and hours to be arranged with approval of the curriculum coordinator.)
An approved work program related to the student's field of specialization for a continuous three-month period. The employer and the type, level, and difficulty of the particular job must be approved prior to the employment period. A written comprehensive report must be submitted during the following term of residence.

MECH 312 Dynamics II
(3-0-3)
Continuation of the study of kinematics and kinetics of particles and rigid bodies, with applications to mechanical systems of current interest to engineers.
Prerequisites: ENGR 212, MATH 321.

MECH 313 Thermodynamics II
(3-0-3)
Application of laws and principles of thermodynamics to real thermodynamic cycles. Teaches analysis of performance and design of internal and external combustion engines, steam generators, heat pumps, compressors, and refrigeration machinery.
Prerequisite: ENGR 355.

MECH 315 Machine Design I
(3-0-3)
Study of stress and fatigue analysis as applied to machine elements.
Prerequisite: ENGR 213.

MECH 316 Machine Design II
(3-0-3)
Application of stress and fatigue analysis in the design and selection of machine elements.
Prerequisite: MECH 315.

MECH 318 Fluid Mechanics I
(3-3-4)
Covers fluid properties, fluid statics, conservation laws of pipe flow, drag, lift fluid dynamics, measurement of flow, viscous flow, laminar, and turbulent flow, and forces due to fluid motion.
Prerequisites: ENGR 211, PHY 221.
Pre- or corequisite: EE 223 or MECH 363.

MECH 323 Heat Transfer I
(3-0-3)
An introduction to the three modes of heat transfer, conduction, convection, and radiation. Teaches the analytical and empirical techniques used for solving problems in heat transfer, including those for which computer application is most suited.
Prerequisites: MATH 321, MECH 318.

MECH 326 Electric Power Systems
(2-3-3)
Study related to theory and application of industrial electric power systems. Topics covered include transformers, motors, generators, motor controls, and protective devices.
Prerequisites: MECH 363 and ENGR 236.

MECH 351 Finite Element Analysis
(2-3-3)
This course is an introduction to the use of finite element analysis (FEA) in the solution of mechanical engineering problems. Existing FEA computer codes are used.
Prerequisites: MECH 315, MET 375.

MECH 360 Materials II
(3-0-3)
This course extends the MET 160 Materials I class using a more theoretical approach. Subjects include metals, polymers, ceramics, and composites.
Prerequisites: MET 160 and CHE 201 or CHE 221.

MECH 363 Instrumentation
(2-3-3)
Study of measurement techniques and equipment used in mechanical engineering. Instrumentation for measurements in mechanics, thermodynamics, fluid dynamics, and electrical systems are considered. Methods of calibration, correction and data reduction are presented.
Prerequisite: PHY 222.
Pre- or corequisite: ENGR 236.

MECH 375 Solid Modeling
(2-3-3)
Introduces solid modeling techniques as applied to mechanical design. Topics include extruded and swept shapes, Boolean operations, and other construction techniques.
Prerequisite: MET 242.

MECH 405 Reading and Conference
(Hours to be arranged each term.)

MECH 414 Introduction to Aerodynamics
(3-0-3)
An introductory course on the fundamentals of aerodynamics. Includes a review of the behavior of fluids in motion, definition of the important parameters in aerodynamic behavior, and study of flow about simple aerodynamic shapes. Emphasis will be placed on low-speed aerodynamics.
Prerequisites: ENGR 355, MECH 318.

MECH 415 Design Project
(2-3-3)
This course involves using material from prior course work in individual student projects.
Prerequisites: MECH 315, MECH 318, MET 242.
Pre- or corequisite: MECH 316.

MECH 417 Fluid Mechanics II
(2-3-3)
Fluid Kinematics, differential analysis, similarity and modeling, and compressible flow. Computational fluid dynamics is introduced.
Prerequisites: ENGR 355, MATH 321, MECH 318.

MECH 421 Introduction to Wind Tunnels
(2-3-3)
An introductory course on the experimental techniques used in wind tunnel testing of aerodynamic shapes. Includes operating characteristics of wind tunnels, the characteristics of and use of models and model instrumentation, and the development of analytical techniques for reduction of wind tunnel data.
Prerequisites: MECH 318, MECH 363.

MECH 427 Experiments in Thermodynamics
(2-3-3)
Application of laws and principles of thermodynamics to performance testing of heat engines. Teaches measurement of power, determination of efficiency, preparation of heat balances, analysis of combustion products, and preparation of engineering reports.
Prerequisites: MECH 313, MECH 363.

MECH 433 HVAC
(2-3-3)
Heating, ventilating, and air conditioning. Application of laws and principles of thermodynamics to analysis, design, and control of mechanically-controlled environments for human comfort, animal health, and food preservation. Teaches computation of heating and cooling loads, humidity control, heating, and refrigeration.
Prerequisite: MECH 323.

MECH 436 Applied Control Systems
(2-3-3)
An introduction to control systems. Both classic control theory and programmable logic controllers are considered. Topics include block diagrams, mathematical models, transfer functions, Laplace transforms, frequency responses along with control components and PLC programming.
Prerequisites: MECH 318, MECH 480.
MECH 437 Heat Transfer II
(1-3-2)
A study of experimental heat transfer. Methods and instrumentation used for investigating heat transfer systems will be considered. Laboratory investigations include studies of heat exchangers, forced and free convection experiments, and determination of radiation and convection coefficients. Prerequisites: MECH 323, MECH 363.

MECH 438 Reciprocating and Turbine Engines
(3-0-3)
Introduction to construction, operation, and theory of reciprocating and turbine engines. Students will learn engine design, history of development, theory and practice of operation. Prerequisites: MECH 313, MECH 315, MECH 318.

MECH 475 Parametric Modeling
(2-3-3)
Introduces feature-based parametric solid modeling techniques as applied to Mechanical Design. Emphasizes the concepts and practices of parametric modeling from the user's perspective. Theoretical and development backgrounds are also covered. Prerequisite: MET 375.

MECH 480 Vibrations
(2-3-3)
An introduction to mechanical vibration. Topics include the equations of motion, resonant frequencies, mode shapes, damping and applications. The laboratory will introduce vibration instrumentation. Prerequisites: ENGR 212, ENGR 266, MATH 321, MECH 315, MECH 363.

MECH 490 Senior Projects I
(2-3-3)
The first of a three-term comprehensive group design project, focusing on the design proposal. This sequence applies material from prior course work, along with concepts of project management, design optimization, and other material related to a group engineering project. Prerequisites: ENGR 355, MECH 315, MECH 318, MET 375; or instructor consent.

MECH 491 Senior Projects II
(2-3-3)
The second of a three-term comprehensive group design project, focusing on project design. Prerequisites: MECH 490, previous term from same instructor, or advisor and instructor consent.

MECH 492 Senior Projects III
(1-6-3)
The third of a three-term comprehensive group design project, focusing on project construction and testing. Prerequisites: MECH 491, previous term from same instructor, or advisor and instructor consent.

(MET) Mechanical Engineering Technology

MET 107, MET 207, MET 307, MET 407 Seminar
(Hours to be arranged each term.)

MET 108 Geometric Dimensioning and Tolerancing
(2-0-2)
The study and application of ANSI geometric dimensioning and tolerancing principles relative to the preparation of engineering drawings. Prerequisite: MET 241.

MET 111 Orientation I
(1-3-2)
Introduction to modern tools of engineering. Creativity in the design of systems and components; on both design and presentation teams. Identification, analysis and solutions to engineering problems. Effective communication techniques. Technical sketching and isometric drawing skills. Prerequisite: MET 111.

MET 112 Orientation II
(1-3-2)
Continuation of MET 111. This sequence will introduce the students to economic, environmental, social, political, ethical, health and safety realities of the campus and the engineering work place; as well as club, networking and internship opportunities. Prerequisite: MET 111.

MET 160 Materials I
(2-3-3)
Survey of materials used in industry and their physical and chemical principles as they relate to structure, properties, corrosion, and engineering applications. Major consideration given to metal alloys. Introduction to polymers, ceramics and composites included. Prerequisites: CHE 101/CHE 104 or CHE 201/CHE 204 or CHE 221.

MET 218 Fluid Mechanics
(3-3-4)
Covers fluid properties, laws of fluid statics, and fluid dynamics, measurement of flow, viscous flow, laminar, and turbulent flow, flow in ducts, forces due to fluid motion, and fluid machinery. Prerequisites: MATH 112; PHY 201 or PHY 221.

MET 232 Thermodynamics
(3-0-3)
An introductory course in thermodynamics. Develops understanding of energy, heat, work, efficiency, the ideal gas law, the first and second laws of thermodynamics and the general energy equation. Prerequisites: MATH 252; PHY 202 or PHY 222.

MET 241 CAD for Mechanical Design I
(1-3-2)
Computer aided drafting (CAD) for mechanical design. The focus of this course is the construction of 2-D drawings using current industry software. Topics include construction principles, input schemes, command structures, and data management. Prerequisite: MET 111.

MET 242 CAD for Mechanical Design II
(1-3-2)
Computer aided drafting (CAD) for mechanical design. The focus of this course is the construction of drawing sets using current industry software. Topics include detail part drawings, assembly drawings, and an introduction to 3-D drafting. Prerequisite: MET 241.

MET 298 Reading and Conference
(Hours to be arranged each term.)

MET 299 Laboratory Practice
(Hours to be arranged each term.)

MET 304, 404 MET Co-op Field Practice
(4 credit hours)
An approved work program related to the student's field of specialization for a continuous three-month period. The employer and the type, level, and difficulty of the particular job must be approved prior to the employment period. A written comprehensive report must be submitted during the following term of residence.

Courses with the following notation fulfill the appropriate general education requirements:

C – Communication
H – Humanities
HP - Humanities Performance
SS – Social Science. For more information see page 38.
MET 313 Applied Thermodynamics
(3-0-3)
Application of laws and principles of thermodynamics to real thermodynamic cycles. Teaches analysis of performance and design of internal and external combustion engines, steam generators, heat pumps, compressors, and refrigeration machinery.
Prerequisite: ENGR 355 or MET 232.

MET 315 Machine Design I
(3-0-3)
Knowledge and skills developed in preceding courses are extended and applied to design and selection of machine elements and machines. Attention is given to functional requirements, methods of manufacture, choice of materials, and economic factors.
Prerequisites: ENGR 213 or ENGT 232; MET 160; PHY 201 or PHY 221.

MET 316 Machine Design II
(3-0-3)
A study of power transmission systems components, their selection, and application to power transmission systems. Special consideration is given to the dynamic characteristics of the systems.
Prerequisite: MET 315.

MET 323 Heat Transfer I
(3-0-3)
An introduction to the three modes of heat transfer, conduction, convection, and radiation. Teaches the analytical and empirical techniques used for solving problems in heat transfer, including those for which computer application is most suited.
Prerequisites: ENGR 355 or MET 232; MET 218.

MET 326 Electric Power Systems
(2-3-3)
Study related to theory and application of industrial electric power systems. Topics covered include transformers, motors, generators, motor controls, and protective devices.
Prerequisite: ENGR 236 or EE 223.

MET 351 Finite Element Analysis
(2-3-3)
This course is an introduction to the use of finite element analysis (FEA) in the solution of mechanical engineering problems. Existing FEA computer codes are used.
Prerequisite: MET 375.
Pre- or corequisite: MET 315.

MET 360 Materials II
(3-0-3)
This course extends the MET 160 Materials I class using a more theoretical approach. Subjects include metals, polymers, ceramics, and composites.
Prerequisite: MET 160.

MET 363 Instrumentation
(2-3-3)
Study of measurement techniques and equipment used in mechanical engineering. Instrumentation for measurements in mechanics, thermodynamics, fluid dynamics, and electrical systems considered. Methods of calibration, correction and data reduction presented.
Prerequisite: PHY 202 or PHY 222.
Pre- or corequisite: ENGR 236.

MET 375 Solid Modeling
(2-3-3)
Introduces solid modeling techniques as applied to mechanical design. Topics include extruded and swept shapes, Boolean operations, and other construction techniques.
Prerequisite: MET 242.

MET 405 Reading and Conference
(Hours to be arranged each term.)

MET 414 Applied Aerodynamics
(3-0-3)
An introductory course on the fundamentals of aerodynamics. Includes a review of the behavior of fluids in motion, definition of the important parameters in aerodynamic behavior, and study of flow about simple aerodynamic shapes. Emphasis will be placed on low-speed aerodynamics.
Prerequisites: ENGR 355 or MET 232; MET 218.

MET 415 Design Project
(2-3-3)
This course involves using material from prior coursework in individual student projects.
Prerequisites: MET 218, MET 315.
Pre- or corequisite: MET 316.

MET 416 Energy Systems
(3-0-3)
Compares available energy resources by application of laws and principles of thermodynamics. Provides computational skills for assessment of a given resource with respect to a given application. Develops understanding of energy economics.
Prerequisites: ENGR 355 or MET 232; MET 326.

MET 417 Gas Laws
(2-3-3)
Application of thermodynamics and fluid mechanics to the analysis of flow of both ideal and real gases in pipes, nozzles, diffusers, compressors and turbines. The course also emphasizes the use of appropriate instrumentation.
Prerequisites: MET 218, MET 313, MET 363.

MET 421 Wind Tunnel Technology
(2-3-3)
An introductory course on the experimental techniques used in wind tunnel testing of aerodynamic shapes. Includes operating characteristics of wind tunnels, the characteristics of and use of models and model instrumentation, and the development of analytical techniques for reduction of wind tunnel data.
Prerequisites: ENGR 355 or MET 232; MET 218, MET 363.

MET 426 Fluid Power Systems
(2-3-3)
A mechanical approach to industrial hydraulic applications with emphasis on selection and function of hardware and interfacing of hydraulic systems with mechanical, fluidic and electrical/electronic controls.
Prerequisites: MET 218, MET 363.

MET 427 Experiments in Thermodynamics
(2-3-3)
Application of laws and principles of thermodynamics to performance testing of heat engines. Teaches measurement of power, determination of efficiency, preparation of heat balances, analysis of combustion products, and preparation of engineering reports.
Prerequisites: MET 313, MET 363.

MET 433 HVAC
(2-3-3)
Heating, ventilating, and air conditioning. Application of laws and principles of thermodynamics to analysis, design, and control of mechanically-controlled environments for human comfort, animal health, and food preservation. Teaches computation of heating and cooling loads, humidity control, heating, and refrigeration.
Prerequisites: MET 313, MET 323.
MET 436 Control Systems
(3-0-3)
An introduction to control systems. Both classic control theory and modern digital process control are considered. Topics include block diagrams, mathematical models, transfer functions, LaPlace transforms, frequency response along with control components and digital controllers.
Prerequisites: ENGR 212, ENGR 236, ENGR 355 or MET 232; MET 218, MET 363.

MET 437 Heat Transfer II
(1-3-2)
A study of experimental heat transfer. Methods and instrumentation used for investigating heat transfer systems will be considered. Laboratory investigations include studies of heat exchangers, forced and free convection experiments, and determination of radiation and convection coefficients.
Prerequisites: MET 323, MET 363.

MET 438 Reciprocating and Turbine Engines
(3-0-3)
Introduction to construction, operation, and theory of reciprocating and turbine engines. Students will learn engine design, history of development, theory and practice of operation.
Prerequisites: MET 218, MET 313, MET 315.

MET 462 Vacuum Technology
(2-3-3)
An introductory course defining the role of high and ultra-high vacua in the process of high vacuum technology. Material will include such topics as vacuum pumping, vacuum gauging, processing of materials in a vacuum, evaporative deposition, sputtering, thin films, mass spectrometry, and leak detection.
Prerequisite: MET 417.

MET 465 Computational Strength of Materials
(3-0-3)
Advanced topics in structural mechanics using calculus and finite element approaches. Topics include stresses and deflections of non-uniform 2-d beams; shafts and connecting rods; axisymmetric shells; circular and rectangular plates; inertial stresses from rotation and seismic effects. Applications are emphasized.
Prerequisites: ENGT 230 and ENGT 231; or ENGR 211 and ENGR 213; MET 351 and MATH 252.

MET 475 Parametric Modeling
(2-3-3)
Introduces feature-based parametric solid modeling techniques as applied to Mechanical Design. Emphasizes the concepts and practices of parametric modeling from the user's perspective. Theoretical and development backgrounds are also covered.
Prerequisite: MET 242.

MET 480 Vibrations
(2-3-3)
An introduction to mechanical vibration. Topics include the equations of motion, resonant frequencies, mode shapes, damping and applications. The laboratory will introduce vibration instrumentation.
Prerequisites: ENGR 212, ENGR 266, MATH 321, MECH 315, MECH 363.

MET 490 Senior Projects I
(2-3-3)
The first of a three-term comprehensive group design project, focusing on the design proposal. This sequence applies material from prior coursework, along with concepts of project management, design optimization, and other material related to a group engineering project.
Prerequisites: ENGR 355 or MET 322; MET 218, MET 315 and MET 375; or instructor consent.

MET 491 Senior Projects II
(2-3-3)
The second of a three-term comprehensive group design project, focusing on project design.
Prerequisite: MET 490 previous term from same instructor, or advisor and instructor consent.

MET 492 Senior Projects III
(1-6-3)
The third of a three-term comprehensive group design project, focusing on project construction and testing.
Prerequisite: MET 491 previous term from same instructor, or advisor and instructor consent.

(MIT) Medical Imaging Technology

MIT 103 Introduction to Medical Imaging
(3-0-3)
Orientation to the art and science of medical imaging. History and development of radiologic science, diagnostic medical sonography, vascular technology, nuclear medicine technology, medical ethics, health care industry, related professional organizations, and regulatory agencies.

MIT 107, MIT 207, MIT 307, MIT 407 Seminar
(Hours to be arranged each term.)

MIT 231 Sonographic Principles and Instrumentation I
(3-3-4)
Properties of sound waves, propagation and interaction of ultrasound in tissue, basic ultrasound instrumentation, static, and real time ultrasound imaging principles and artifacts are covered. Laboratory includes demonstration of wave characteristics and introduction to basic instrumentation of real-time ultrasound imaging. Satisfies Science elective.
Prerequisite: PHY 217 with grade "C" or better.

MIT 232 Sonographic Principles and Instrumentation II
(3-3-4)
Advanced physical principles. Hemodynamics, Doppler physics, color imaging, and artifacts associated with them are covered. Digital signal and image processing and bioeffects are also discussed. Laboratory develops instrumentation skills. Satisfies Science elective.
Prerequisite: MIT 231 with grade "C" or better.

MIT 260 Introduction to PACS
(3-0-3)
An introduction to PACS and how it has changed the medical work environment. Subjects covered include: EMR/RIS/PACS integration, evaluating the human computer interface, Dicom tools and viewers, archive media, PACS components, Moore's Law, PACS licensing, user impact and DICOM configuration.

MIT 333 HIPAA for PACS/Hi
(3-0-3)
Basic concepts of HIPAA, including consideration of how HIPAA affects patient information systems. Covers the three parts of HIPAA law, and the role of IT professionals who interact with patient data.
Prerequisite: MIT 103 or instructor permission.
MIT 361 Advanced PACS
(3-0-3)
An advanced survey of PACS-based systems and technologies making up enterprise PACS. Topics include: number systems and data representation, computer architecture, database management systems, computer networks, health informatics workflow, DICOM and HL7.
Prerequisite: MIT 260 with grade “C” or better.

MIT 362 PACS Networking
(3-0-3)
Study of principles and fundamentals of network based communication between PACS, Imaging Modalities and network related devices. The 7 layer communication model is studied as mapped to standard TCP/IP implementations. Layer 7 is approached in relevance to the DICOM standard packet definitions and DICOM information model.
Prerequisite: MIT 260 with grade “C” or better.

MIT 363 PACS DBMS
(3-0-3)
Study of principles and fundamental concepts characterizing data representation relevant to PACS systems. Topics covered include database basics, SQL, Normalization Techniques, DICOM information definitions. Project definitions are based on DICOM Standard as an information model.
Prerequisites: MIS 275, MIT 362 with grade “C” or better.

MIT 374 Quality Assurance of Medical Images
(3-0-3)
An overview of the medical imaging modalities, focusing on image identification and acquisition, relative to basic quality control procedures and guidelines for a quality assurance program.
Prerequisites: BIO 200, BIO 233 with grade “C” or better.

(MUS) Music
MUS 107, MUS 207, MUS 307, MUS 407 Seminar
(Hours to be arranged each term.) H
MUS 195 Band
(0-3-1) HP
(One hour each term.)
MUS 197 Chorus
(0-3-1) HP
(One hour each term.)

(NMT) Nuclear Medicine Technology
NMT 107, NMT 207, NMT 307, NMT 407 Seminar
(Hours to be arranged each term.)
NMT 205 Nuclear Medicine Administration
(2-0-2)
Orientation to the principles of management, marketing nuclear medicine services, and administrative procedures.
Prerequisite: MIT 103 with grade “C” or better.

NMT 211 Nuclear Medicine Physics
(3-0-3)
Prerequisites: NMT 107, NMT 207, NMT 307, NMT 407 Seminar.

NMT 215 Radiochemistry and Radiopharmacy
(3-3-4)
The design and function of radionuclide generators, labeling procedures, sterility and pyrogenicity considerations, radionuclide and radiopharmaceutical quality control procedures.
Prerequisites: CHE 350 with grade “C” or better.

NMT 217 Patient Care
(3-3-4)
Basic concepts of patient care, including consideration of physical and psychological needs of the patient and family. Routine and emergency patient care procedures. Infection control procedures utilizing Universal Precautions. Role of the nuclear medicine technologist in patient education.
Prerequisite: MIT 103.

NMT 225 Nuclear Physics/Instrumentation
(3-3-4)
An in-depth examination of the physics in nuclear medicine, principles of detection, considerations of counting and imaging, collimators, planar imaging and associated quality assurance and control. Use of all major instrumentation in Nuclear Medicine Departments.
Prerequisite: NMT 215 with grade “C” or better.

NMT 256 Cardiovascular Imaging
(3-0-3)
Introduction to Cardiovascular Imaging techniques in Nuclear Medicine including planar, SPECT, and PET imaging acquisition and processing protocols, radiopharmaceuticals, cardiac anatomy and physiology, exercise and pharmacological stress testing, and EKG principles.
Prerequisites: NMT 205, NMT 215, NMT 217.

NMT 311 Imaging Procedures I
(3-3-4)
Proper patient care before, during and after the procedure, identification and administration of prescribed radiopharmaceuticals. The use of imaging devices and external detectors for organ imaging.
Prerequisite: NMT 225 with grade “C” or better.

NMT 312 Imaging Procedures II
(3-3-4)
Proper patient care before, during and after the procedure, identification and administration of prescribed radiopharmaceuticals. The use of imaging devices and external detectors for body organ imaging.
Prerequisite: NMT 225 with grade “C” or better.

NMT 313 Therapeutic Procedures and In-Vitro Studies
(3-3-4)
Common therapeutic applications of radionuclides, dose ranges for each application, and proper techniques for calculating quantities of administered radiopharmaceuticals. Includes patient care, follow-up procedures and disposal of excreta. Body composition tests using In-Vitro techniques.
Prerequisite: NMT 312 with grade “C” or better.
NMT 325 SPECT Imaging and Computer Applications
(3-3-4)
Single photon emission computed tomography (SPECT) imaging and computer applications as applied to nuclear medicine imaging. Demonstration of computer techniques and ECG monitoring and interpretation. Theoretic basis of computer operations and medical applications in nuclear medicine. Lab experience with computerized systems, including hospital sites. Prerequisites: BIO 335 and NMT 312 with grade “C” or better.

NMT 346 Magnetic Resonance
(3-3-4)
Physics and principles used in the production of magnetic resonance images and spectroscopy. Static magnetic fields, gradient magnetic fields, secondary coil fields, nuclear magnetic resonance (NMR), spatial domain, frequency domain, computer data acquisition, relaxation times, pulse sequence diagrams. Laboratory simulation is included. Prerequisites: NMT 225 and PHY 217 (or equivalent) with grade “C” or better.

NMT 355 Computed Tomography
(3-3-4)
X-ray physics, scanner components and data acquisition of computed tomography. Image reconstruction, manipulation and artifacts. CT patient care and imaging procedures of the head, neck, spine, chest, abdomen, pelvis and musculoskeletal system. Laboratory simulator practice on image manipulation, scan post processing and reconstruction. Prerequisite: NMT 311 with grade “C” or better. Corequisites: NMT 367, BIO 335.

NMT 367 PET Imaging
(3-0-3)
Introduction to Position Emission Tomography (PET) imaging techniques including acquisition protocols, processing protocols, quality control procedures, radiation protection, patient screening, radiopharmaceuticals, image fusion, and imaging procedures. Prerequisite: NMT 225 with grade “C” or better. Corequisites: NMT 311 and NMT 346.

NMT 388 Externship Preparation
(3-0-3)
Review and summarize key concepts in Nuclear Medicine. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the hospital environment. Review and discussion of the NMT Externship Handbook and Procedures Log. Prerequisites: Third quarter junior level status is required for this course.

NMT 410 Nuclear Medicine Technology Externship
(0-40-15)
All students must complete four consecutive terms (12 months) of clinical experience in nuclear medicine technology at an OIT approved site. Students will work under the direct supervision of a registered Nuclear Medicine Technologist. Prerequisite: All NMT courses with grade “C” or better.

NMT 445 Computed Tomography Clinical Experience
(0-15-5)
All students must complete three consecutive terms (9 months) of clinical experience in computed tomography at a hospital or clinic of their choosing. Students will work under the direct supervision of an ARRT (CT) board registered technologist. Prerequisite: ARRT and/or NMTCB registry in nuclear medicine technology at an OIT approved site. Students will work under the direct supervision of an ARRT (CT) board registered technologist.

NMT 464 Human Physiology
(4-0-4)
Human body systems, including hospital sites. Laboratory simulator practice on image manipulation, scan post processing and reconstruction. Prerequisite: NMT 311 with grade “C” or better. Corequisites: NMT 367, BIO 335.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
(PHY) Physics

PHY 201 General Physics
(3-3-4)
An introduction to physics with study of Newtonian mechanics, including kinematics, dynamics, work, energy, power, and hydraulics. All general physics students must register for a laboratory section.
Prerequisite: MATH 112 with grade “C” or better.

PHY 202 General Physics
(3-3-4)
Temperature systems, heat, kinetic theory of gasses, introductory thermodynamics, and the fundamentals of electricity and magnetism. All general physics students must register for a laboratory section.
Prerequisite: PHY 201.

PHY 203 General Physics
(3-3-4)
Wave motion, sound, introduction to geometrical and physical optics, and topics from modern physics. All general physics students must register for a laboratory section.
Prerequisite: PHY 202.

PHY 215 Topics in Astronomy
(2-3-3)
Astronomy including a survey of the solar system, constellations, star characteristics, star groupings, galactic and extragalactic objects, stellar evolution, and instrumentation with emphasis on topics of maximum interest to the students.
Prerequisite: MATH 111.

PHY 217 Physics of Medical Imaging
(3-0-3)
An introduction to physics for MIT majors. Topics include: basic mechanics, basic electrostatics, fundamentals of electronics, magnetism, sources and types of radiation, and image formation.
Prerequisite: MATH 112 with grade “C” or better.

PHY 221 General Physics with Calculus
(3-3-4)
Basic principles of physics with emphasis on applications of calculus. Newtonian mechanics, including kinematics, dynamics, work, energy, power, and hydraulics. All general physics students must register for a laboratory section.
Prerequisite: MATH 251 with grade “C” or better.
Corequisite: MATH 252.

PHY 222 General Physics with Calculus
(3-3-4)
Temperature systems, heat, kinetic theory of gases, thermodynamics and the fundamentals of electricity and magnetism. All general physics students must register for a laboratory section.
Prerequisites: PHY 221, MATH 252.

PHY 223 General Physics with Calculus
(3-3-4)
Wave motion, sound, introduction to geometrical and physical optics, and selected topics from modern physics. All general physics students must register for a laboratory section.
Prerequisite: PHY 222.

PHY 237 Meteorology
(2-3-3)
Principles of atmospheric structure and movement; horizontal and vertical motions; air masses; micrometeorology; atmospheric diffusion in relation to air pollution.
Prerequisite: PHY 202 or PHY 222.

PHY 311, PHY 312, PHY 313 Introduction to Modern Physics
(3-0-3)
An introduction to physics of the 20th century, including selected topics from atomic and nuclear physics and quantum theory with applications in science and industry.
Prerequisite: PHY 203 or PHY 223.

PHY 330 Electricity and Magnetism
(3-0-3)
A study of electromagnetic phenomena leading to and using Maxwell's equations. Topics will include static fields in vacuum and in dielectric media, electric and magnetic potentials, and the energy density of electromagnetic fields.
Prerequisites: MATH 254N, PHY 222.
Corequisite: MATH 253N.

PHY 410 Mathematical Methods: Fourier Optics
(3-0-3)
Linear systems, Fourier transforms, and their use in optics. Topics will include special functions, orthogonal expansions, Fourier series and transforms and spectra of functions, mathematical operators, convolution, autocorrelation, cross correlation, linear systems as filters, and signal processing.
Prerequisite: MATH 254N.

(PSCI) Political Science

PSCI 107, PSCI 207, PSCI 307, PSCI 407 Seminar
(Hours to be arranged each term.) SS

PSCI 201 United States Government
(3-0-3) SS
Basic concepts and principles of the American political system.

PSCI 250 Introduction to World Politics
(3-0-3) SS
Introduction to international relations and global issues. The rise and demise of the Cold War, international efforts towards arms control, and global environmental and economic problems.
Prerequisite: WRI 122.

PSCI 326 World Politics in Transition
(3-0-3) SS
International relations theory and world politics in the post-Cold War period. Topics include changing great power relations, conflict management, global inequalities and transnational problems.
Prerequisite: PSCI 250.

PSCI 355 International Conflict in the 20th Century
(3-0-3) SS
The functions, origins, and forms of war in the 20th Century examined in the context of political theory and history. Case studies include World War I, World War II, Korea, Vietnam, and the Persian Gulf War.
Prerequisite: PSCI 250.

PSCI 497 United States Foreign Policy
(3-0-3) SS
The American foreign policy process, recurring themes in U.S. foreign policy, and the content of U.S. policy in such areas as Europe, Latin America, and the Middle East.
Prerequisite: PSCI 250.
(PSG) Polysomnographic Technology

PSG 107, PSG 207 Seminar
(Hours to be arranged each term.)

PSG 211 Fundamentals of PSG and Patient Care
(3-0-3)
Basic concepts of patient care, including consideration of physical and psychological needs of the patient and family. Routine and emergency patient care procedures. Infection control procedures utilizing universal precautions. Role of the polysomnographic technologist in patient education. Ethical and legal issues.

PSG 221 Physiology of Sleep
(3-0-3)
Introduction to sleep architecture and the function of changes in electroencephalograms, electrocardiograms, and electromyograms. Physiology of sleep-induced alterations in pharyngeal muscle tone, autonomic control and polysomnographic staging.

PSG 231 Sleep Disorders Pathology
(4-0-4)
Normal and abnormal sleep disorders integrating the physiological functions of the nervous, respiratory, and cardiovascular systems. Emphasis on basic sleep sciences, physiology, diagnosis and treatment of sleep disorders. Prerequisite: PSG 221.

PSG 246 Sleep Disorders in Women
(3-0-3)
In-depth study of sleep disorders in women exploring: the menstrual cycle; circadian rhythms and shiftworking women; polycystic ovary syndrome; endometriosis, fibromyalgia; breast cancer and fatigue; pregnancy and sleep-disordered breathing; insomnia and other medically related sleep disturbances.

PSG 264 Pediatric/Neonatal Polysomnography
(4-0-4)
Presentation of theory and its practical applications in pediatric and neonatal respiratory diseases and other sleep disorders. Includes pathophysiology, etiology, patient testing, scoring and treatment. Prerequisite: PSG 221.

PSG 271A Clinical Polysomnographic Technology Part A
(2-12-6)
Medical terminology, instrumentation setup and calibration, 10/20 system, patient hook-ups, recording and monitoring techniques, documentation, event recognition, monitoring, therapeutic intervention, professional issues and patient-technologist interactions related to polysomnographic technology. Part-time students only, requires 18 nighttime clinical hours weekly. Pre- or Corequisite: PSG 211.

PSG 271B Clinical Polysomnographic Technology Part B
(2-12-6)
Medical terminology, instrumentation setup and calibration, 10/20 system, patient hook-ups, recording and monitoring techniques, documentation, event recognition, monitoring, therapeutic intervention, professional issues and patient-technologist interactions related to polysomnographic technology. Part-time students only, requires 18 nighttime clinical hours weekly. Prerequisite: PSG 271A.

PSG 271C Clinical Polysomnographic Technology Part C
(2-12-6)
Advanced aspects of polysomnographic technology including recognition of sleep disorders, recording and monitoring, therapeutic interventions, scoring, MSLT, RTSW and neurophysiology interpretation of sleep. Part-time students only, requires 18 daytime clinical hours weekly. Prerequisite: PSG 271B.

PSG 272 Clinical Polysomnographic Technology I
(2-27-9)
Medical terminology, instrumentation setup and calibration, 10/20 system, patient hook-ups, recording and monitoring techniques, documentation, event recognition, monitoring, therapeutic intervention, professional issues and patient-technologist interactions related to polysomnographic technology. Requires 27 clinical hours weekly at night in the lab. Pre- or corequisite: PSG 211.

PSG 273 Clinical Polysomnographic Technology II
(2-27-9)
Advanced aspects of polysomnographic technology including recognition of sleep disorders, recording and monitoring, therapeutic interventions, scoring, Multiple Sleep Latency Test, Repeated Test of Sustained Wakefulness and neurophysiology interpretation of sleep. Requires 27 clinical hours weekly during the day and night. Prerequisite: PSG 272.

(PSY) Psychology

PSY 107, PSY 207, PSY 307, PSY 407 Seminar
(Hours to be arranged each term.) SS

PSY 110 Human Services Careers
(1-0-1) SS
Presentation and discussion of career options of psychology majors.

PSY 201 Psychology
(3-0-3) SS
Introduction to the principles and applications of psychology. Topics include scientific methodology, learning, memory and cognitive processes.

PSY 202 Psychology
(3-0-3) SS
Introduction to the principles and applications of psychology. Topics include the brain and behavior, consciousness, sensation and perception, and health psychology.

PSY 203 Psychology
(3-0-3) SS
Introduction to the principles and applications of psychology. Topics include social psychology, personality, maladjustment and psychotherapy.

PSY 215 Abnormal Psychology I
(3-0-3) SS
Overview of biological, psychological, and social causes of abnormal behavior. Specific topics include models, classification and assessment of abnormal behavior, as well as anxiety, somatization, dissociative, personality, impulse, alcohol and substance abuse disorders. Prerequisite: PSY 203 or instructor consent.

PSY 216 Abnormal Psychology II
(3-0-3) SS
Overview of legal and ethical issues related to abnormal psychology. Techniques of group and individual therapy. Specific disorders include: sexual and gender identity, mood, schizophrenia, cognitive, and childhood and adolescence. Prerequisite: PSY 215 or instructor consent.

PSY 220 Community Psychology
(3-0-3) SS
Community mental health, epidemiology, program evaluation and social ecology. Research, theory and practice in community settings. The influence of community-environmental factors in individual functioning and their utilization to promote mental health. Prerequisite: PSY 203.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
PSY 301 Basic Counseling Techniques
(3-3-4) SS
Basic counseling and interpersonal skills, including reflective listening, expressing empathy, questioning, and confrontation are taught. Complex skills such as goal setting, documentation, suicide/homicide crisis intervention, and handling client noncompliance. Laboratory employs CD-ROM and role-play formats. Prerequisite: PSY 216.

PSY 311 Human Growth and Development I
(3-0-3) SS
A biosocial study of human development from conception to adolescence. Discusses the biological and social processes (e.g., cognition, personality, emotion, and social) affecting the developing child. Applications to health care, family, and education are discussed. Prerequisite: PSY 201.

PSY 312 Human Growth and Development II
(3-0-3) SS
The psychological study of the continuing development of the human being from adolescence through old age and death. Discussion focuses on the social and health care issues of adulthood. Applications to health care, family and social policy. Prerequisite: PSY 201.

PSY 313 Psychological Research Methods I
(3-3-4) SS
Overview of the techniques of research in psychology. Emphasis placed on evaluating psychological measurements, reliability and validity, and interpretation of psychological data. Reviews sources of invalidity and techniques for minimizing these sources. Prerequisites: PSY 203, MATH 243 or MATH 361, each with grade "C" or better.

PSY 314 Psychological Research Methods II
(3-3-4) SS
Overview of the techniques of research in psychology. Emphasis placed on techniques of quantitative research. Review of experimental, quasi-experimental, field and survey research methods. Prerequisite: PSY 313.

PSY 317 Field Placement Seminar
(2-0-2) SS
Presentations and discussions of externship and placement sites, including related skill sets.

PSY 321, PSY 322 Theories of Personality
(3-0-3) SS
In-depth coverage of personality theories in terms of each theorist's personal experiences and the theories' major concepts and definitions of mental illness and treatment. Applications of various theoretical concepts to case studies and to people in their personal lives. Prerequisite: PSY 201, PSY 202 or PSY 203.

PSY 325 Stress Management
(3-3-4) SS
Discussion of the concept of stress and its physical and psychological impact. Description of the physical and psychological stress reactions, stress related disease processes and techniques of stress management. Prerequisite: PSY 201, PSY 202 or PSY 203.

PSY 330 Social Psychology I
(3-0-3) SS
Surveys behavior and experience in a social context. Topics include the self in the social world, attribution, social cognition, affiliation and romantic relationships. Theory, research and application discussed. Prerequisite: PSY 201 or PSY 203.

PSY 331 Social Psychology II
(3-0-3) SS
Surveys behavior and experience in a social context. Topics include social influence, attitudes and persuasion, aggression, group dynamics, altruism and stereotyping/prejudice/discrimination. Theory, research and application discussed. Prerequisite: PSY 330.

PSY 334 Behavior Modification I
(3-3-4) SS
Measurement of behavior and key concepts of operant learning are covered, e.g., reinforcement, extinction, punishment, stimulus control and shaping, among others. Laboratory exercises are interactive computer simulations of these concepts. Prerequisite: PSY 203.

PSY 335 Behavior Modification II
(3-3-4) SS
Principles learned in PSY 334 are applied to the study of human behavior. Complex techniques and new learning concepts found in the "real world" are also covered. Treatment plans for actual human problem behaviors are created in the laboratory. Prerequisite: PSY 334.

PSY 336 Health Psychology I
(3-0-3) SS
The scientific study of behavior, thoughts, attitudes, and beliefs related to health and illness. Specific areas covered include: stress, realities of health care delivery, research methods, and patient demographics.

PSY 337 Health Psychology II
(3-0-3) SS
The scientific study of behavior, thoughts, attitudes, and beliefs related to health and illness. Specific areas covered include: substance abuse, alcohol problems, eating disorders, AIDS, coronary health, pain, chronic illness, pediatric health, and health problems of aging. Prerequisite: PSY 336.

PSY 339 Biopsychology
(3-0-3) SS
Anatomical and physiological basis of behavior patterns presented from genetic, developmental, evolutionary and functional evidence. Discussions of mind-body relationships, senses, sleep, motor activity, emotions, and reproduction. Prerequisite: PSY 202 or BIO 232 or instructor consent.

PSY 341 Psychoactive Drugs I: Psychiatric Drugs
(3-0-3) SS
Phylogically, behavioral, social, and societal effects of psychiatric drugs including anti-anxiety, anti-depressant, and anti-psychotic drugs. Prerequisites: PSY 202 and PSY 216.

PSY 342 Psychoactive Drugs II: Abused Drugs
(3-0-3) SS
Physiological, behavioral, social, and societal effects of abused drugs including alcohol, hallucinogens, marijuana, opiates, and stimulants. Prerequisite: PSY 341.

PSY 347 Organizational Behavior
(3-0-3) SS
Psychology applied to business organization and operations as they affect employees, customers, and the community with particular interest on group processes. Prerequisite: Junior standing or instructor consent.

PSY 351 Cognitive Restructuring I
(3-3-4) SS
Philosophy behind criminal thinking errors, which influence their thought patterns. Laboratory component includes participation in client groups and casework. Prerequisite: PSY 301 or PSY 334.
PSY 352 Cognitive Restructuring II
(3-3-0) SS
Analysis of thought patterns which cause behaviors leading clients to mandated counseling. Laboratory component includes participation in client groups and casework. Prerequisite: PSY 351.

PSY 355 Evolutionary Psychology
(3-0-3) SS
Examination of biological determinants underlying human behavior. Discusses family relations, aggression, crime, mating and other social aspects with regard to adaptation and fitness. Prerequisite: BIO 103, or BIO 213, or PSY 203, or instructor consent.

PSY 358 Psychology of Gender
(3-0-3) SS
Psychological examination of the functioning, specialization, self-concept, and roles of women and men. Issues that women and men face in the gendered world are critically analyzed scientifically and experientially. Prerequisite: PSY 201, PSY 202, or PSY 203.

PSY 360 Organizational Psychology
(3-0-3) SS
Psychology applied to human relations problems in the work world. Specific topics include job satisfaction, motivation, leadership, attitudes and effects of stress on employees and job performance. Prerequisite: PSY 201.

PSY 361 Industrial Psychology
(3-0-3) SS
Application of psychological principles, theories and behavioral techniques applied to human relations, problems in industrial situations. Prerequisite: PSY 201, PSY 202 or PSY 203.

PSY 364 Environmental Psychology
(3-0-3) SS
Analysis of the interaction between human behavior and the environment. Discussions focus on how the environment affects humans and how our behavior influences the environment. Topics include environmental stress, architecture, perceptions and attitudes, and behavior to save the environment. Prerequisite: PSY 201.

PSY 371 Human Sexuality I
(3-0-3) SS
Social, cultural, psychological and physiological influences on human sexuality are examined. Topics include: theory and research, gender, anatomy and functioning, and human relationship components, including love and communication. Prerequisite: PSY 201, PSY 202, or PSY 203.

PSY 372 Human Sexuality II
(3-0-3) SS
Social, cultural, psychological and physiological influences on human sexuality are examined. Topics include: sexual orientation, pregnancy, contraceptive practices, sexual dysfunctions, sexually transmitted infections, paraphilias, sexual assault, media images, the sale of sex. Prerequisite: PSY 371.

PSY 401 Advanced Counseling Techniques
(3-3-0) SS
Major schools of psychotherapy are discussed. Students practice related techniques in the laboratory following demonstration and instruction. Group therapy techniques are emphasized with associated laboratory work using interactive CD-ROM, group therapy videotapes, and a Web site corresponding to readings. Prerequisite: PSY 301.

PSY 402 Applied Psychology Methods II
(3-3-0) SS
Skills training in paraprofessional counseling and assessment techniques, program development and evaluation. Interviewing, evaluation procedures, consultation, referral, seminar development and delivery are included. Individualized instruction and supervision of individual projects. Role-playing of helping skills is a major focus. Prerequisite: PSY 401.

PSY 403 Applied Psychology Methods III
(2-6-4) SS
Focus on application of skills and knowledge acquired in Methods I and II courses. Practicum-like experience of supervised implementation of projects created in PSY 402 (e.g., seminar delivery), or other participation in an established program, either on or off campus. Prerequisite: PSY 402.

PSY 410 Organizational Change and Development
(3-0-3) SS
Theories and processes necessary to understand and implement change within organizations. Focuses on impact of technological change in organizations and on skill development in planning, implementing and evaluating change.

PSY 416 Abnormal Behavior of Children and Adolescents
(3-0-3) SS
Highlights differences between children and adults in their expression of emotional and interpersonal problems. Language/learning disabilities, problems of attention deficit, school refusal and separation anxiety, depression, and eating. Description of symptoms and treatments are emphasized. Prerequisites: PSY 215, PSY 216, PSY 311, PSY 312.

PSY 420 Applied Psychology Externship
(4, 8, 12 or 16 credit hours) SS
Opportunities to work under supervision in applied settings related to students' career interests. Students apply the knowledge they acquired in their classes and gain experience working in the field. Prerequisites: PSY 301 with grade “C” or better and PSY 317 with grade “B” or better. Approval from the externship coordinator and completion of at least 120 hours of college credit.

PSY 421 Senior Project I
(1-6-3) SS
First term of a three-term comprehensive project in applied psychology. Focus on refining a research project, literature review and formulation of research question. Prerequisite: PSY 313.

PSY 422 Senior Project II
(1-6-3) SS
Second term of a three-term comprehensive project in applied psychology. Focus on development of research methodology and pilot testing of project. Prerequisite: PSY 421.

PSY 423 Senior Project III
(1-6-3) SS
Third term of a three-term comprehensive project in applied psychology. Focus on data collection, writing of research report and oral presentation of project. Prerequisite: PSY 422.

PSY 428 Animal Behavior
(3-0-3) SS
The biological foundations of animal behavior are presented from an ethological and comparative psychology perspective. Emphasizes the evolution, development, and physiological basis of behavior patterns and presents topics on learning, perception, orientation, communication, and social behavior. (Cannot be taken for graduation credit by students who have taken BIO 428.) Prerequisite: PSY 202 or BIO 213.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 431</td>
<td>Family Therapy</td>
<td>(3-0-3)</td>
<td>SS Basic differences between functional and dysfunctional families. Theoretical underpinnings of family therapy, an emphasis on particular theoretical models, different family populations including single parent families, blended families and culturally diverse families. Prerequisite: PSY 301.</td>
</tr>
<tr>
<td>PSY 434</td>
<td>Advanced Behavior Modification I</td>
<td>(4-0-4)</td>
<td>SS Ethical principles and issues in Applied Behavior Analysis, the methods for measuring and evaluating behavior change, specifically single-subject research designs and behavioral assessment methods and techniques. Prerequisites: PSY 313 and PSY 335.</td>
</tr>
<tr>
<td>PSY 435</td>
<td>Advanced Behavior Modification II</td>
<td>(4-0-4)</td>
<td>SS Application of principles and techniques of Applied Behavior Analysis to change behavior and develop systems to support behavior change. Prerequisite: PSY 434.</td>
</tr>
<tr>
<td>PSY 432</td>
<td>Group Therapy</td>
<td>(3-3-4)</td>
<td>SS Theory and application of group therapy techniques. Historical and current applications of group treatment, special populations and multicultural considerations. Prerequisite: PSY 301.</td>
</tr>
<tr>
<td>PSY 436</td>
<td>Psychological Trauma</td>
<td>(3-0-3)</td>
<td>SS Explores and introduces student to psychologically traumatic experiences in terms of definition, impact and reactions, including assessment and treatment of trauma-related psychological problems. Special focus on post-traumatic stress disorder. Prerequisites: PSY 301.</td>
</tr>
<tr>
<td>PSY 456</td>
<td>Performance Management</td>
<td>(3-0-3)</td>
<td>SS Applications of Applied Behavior Analysis in business, industry and government. Includes proposal to identify and intervene with real-life performance problem. Prerequisite: PSY 335.</td>
</tr>
<tr>
<td>PSY 464</td>
<td>Organizational Structure</td>
<td>(3-0-3)</td>
<td>SS Analysis of how organizations divide work to employees and then coordinate across employees. Describes how organizational structure changes with changing conditions. Prerequisite: PSY 361.</td>
</tr>
<tr>
<td>PSY 480</td>
<td>Theories of Learning</td>
<td>(4-0-4)</td>
<td>SS The basics of the major learning theories as they apply to operant and respondent conditioning, social learning, and memory. Prerequisite: PSY 335.</td>
</tr>
<tr>
<td>PSY 497</td>
<td>Special Projects/Training</td>
<td></td>
<td>SS Students may enroll for credit in special programs offered by external agencies, approved by the department, leading to the development of specialized skills. Programs may include training to work with special populations. May be taken twice for credit. Prerequisite: Senior standing in Applied Psychology and permission of HSS department chair.</td>
</tr>
<tr>
<td>PSY 499</td>
<td>Independent Study</td>
<td></td>
<td>SS Intensive self-study of a topic in psychology of the student’s choosing. Study guided by any professor in the Applied Psychology program. May be repeated, with different topics, up to three times. Prerequisite: Senior standing in Applied Psychology and permission of HSS department chair.</td>
</tr>
<tr>
<td>RDSC 202</td>
<td>Imaging Techniques II</td>
<td>(3-3-4)</td>
<td>SS Radiographic principles and principles of radiographic quality. Study of theory and practice in methods of protection against ionizing radiation. Prerequisite: RDSC 201 with grade “C” or better.</td>
</tr>
<tr>
<td>RDSC 205</td>
<td>Patient Care</td>
<td>(3-3-4)</td>
<td>SS Basic concepts of patient care, including consideration of physical and psychological needs of the patient and family. Routine and emergency patient care procedures. Infection control procedures utilizing Universal Precautions. Role of the radiographer in patient education. Prerequisite: MIT 103.</td>
</tr>
<tr>
<td>RDSC 210</td>
<td>Radiographic Positioning I</td>
<td>(3-3-4)</td>
<td>SS Demonstration and practice of the routine and special radiographic positions of bones of the upper and lower extremities excluding the shoulder and pelvic girdles. Prerequisites: RDSC 201 and RDSC 235 with grade “C” or better.</td>
</tr>
<tr>
<td>RDSC 211</td>
<td>Radiographic Positioning II</td>
<td>(3-3-4)</td>
<td>SS Demonstration and practice of routine and special radiographic positions of the axial skeleton, shoulder, and pelvic girdles. Prerequisites: RDSC 202, RDSC 210, and RDSC 235 with grade “C” or better.</td>
</tr>
<tr>
<td>RDSC 225</td>
<td>Contrast Media Procedures</td>
<td>(3-3-4)</td>
<td>SS Routine radiographic examinations of the urinary system, gastrointestinal biliary system, respiratory system, and nervous system, using various contrast media and filming techniques. All radiographically significant anatomy, physiology, pathology, terminology, and topography, including all contrast studies of these systems. Prerequisites: RDSC 202, RDSC 210, RDSC 235, and RDSC 272 with grade “C” or better.</td>
</tr>
<tr>
<td>RDSC 235</td>
<td>Equipment Operation and Maintenance</td>
<td>(3-0-3)</td>
<td>SS Basic components and operation of radiographic, fluoroscopic, and mobile units. Evaluation, calibration, and maintenance of radiographic equipment and accessories.</td>
</tr>
</tbody>
</table>
RDSC 272 Radiation Protection
(3-0-3)
Basic properties, sources, units of measurement, dosimetry, and biological effects of radiation. Methods of personnel protection and minimizing patient exposure. NCRP recommendations for protective devices and personnel monitoring. Prerequisites: RDSC 201 and RDSC 235 with grade “C” or better.

RDSC 301 Radiographic Positioning III
(3-3-4)
Demonstration and practice of routine and special radiographic positions of the skull, facial bones, and paranasal sinuses. Prerequisites: RDSC 211 and RDSC 233 with grade “C” or better.

RDSC 320 Surgical, Trauma and Mobile Radiography
(3-3-4)
Routine radiographic examinations of the reproductive, muscular, nervous, skeletal and circulatory systems. Also including emergency and surgical procedures, using various contrast media and filming techniques. The comprehensive study of all radiographically significant anatomy, physiology, pathology, terminology, and topography including all contrast studies of these systems. Control of microorganism by physical and chemical means is incorporated as necessary.

RDSC 326 Cardiovascular/Interventional Technology
(3-3-4)
Demonstration and practice of special radiographic examinations of nervous and vascular systems including use of serial film changers and pressure injectors, and other necessary equipment. Also includes related nursing procedures. Prerequisites: RDSC 211, RDSC 233, and RDSC 320 with grade “C” or better.

RDSC 350 Bones: The Interactive Anatomy and Position Course
(2-0-2)
A sequential review of osteology and positioning designed for the medical imaging student who has completed the positioning sequence, or the graduate seeking continuing education credit. Prerequisites: RDSC 210, RDSC 211, RDSC 301, or Registered Radiologic Technologist.

RDSC 354 Mammography
(3-3-4)
An in-depth analysis of mammographic positioning, exposure techniques, quality control, film critiquing, and radiation safety. Includes mock registry exam. Prerequisite: RDSC 301.

RDSC 355 Computed Tomography
(3-3-4)
X-ray physics, scanner components, and data acquisition of computed tomography. Image reconstruction, manipulation, and artifacts. CT patient care and imaging procedures of the head, neck, spine, chest, abdomen, pelvis, and musculoskeletal system. Laboratory simulation is included. Prerequisite: BIO 335.

RDSC 356 Magnetic Resonance
(3-3-4)
Physics and principles used in the production of magnetic resonance images and spectroscopy. Static magnetic fields, gradient magnetic fields, secondary coil fields, nuclear magnetic resonance (NMR), spatial domain, frequency domain, computer data acquisition, relaxation times, pulse sequence diagrams. Laboratory simulation is included. Prerequisites: BIO 335 and PHY 201 or PHY 217 all with grade “C” or better.

RDSC 365 Advanced Quality Assurance/Quality Control
(3-3-4)
Principles of diagnostic radiographic quality assurance systems including: quality control testing, equipment calibration, preventive maintenance, and government regulations. Laboratory experiments involve QC tests and measurements. Prerequisites: RDSC 202, RDSC 272.

RDSC 366 Radiographic Pathology
(3-0-3)
An overview of common pathological conditions encountered in the clinical setting, for RDSC students. Pathology is categorized by body systems. The students will learn the pathology as they relate to: signs and symptoms, etiology, imaging diagnosis and prognosis and treatment. Prerequisite: BIO 336.

RDSC 388 Externship Preparation
(2-0-2)
Presentation of key concepts related to Radiologic Science externship and required in-services. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the clinical environment. Review and discussion of the RDSC Externship Handbook. This course is a mandatory course that must be completed prior to externship. Prerequisite: RDSC 356.

RDSC 410 Radiologic Science Externship
(0-40-15)
Students must complete four terms (12 months) of clinical experience in both general radiography and special imaging modalities, to include computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine and/or cardiovascular interventional technology at an affiliated clinical site. Students will complete all phases of general radiography and a maximum of 12 weeks in the special imaging modalities. Students under the direct supervision of qualified radiographers and radiologists. Prerequisites: All academic coursework in the Radiologic Science curriculum.

RDSC 411 Special Radiologic Science Externship
(0-40-15)
This one-term (three-month) practicum is designed to develop the skills of the student in the special imaging modalities, i.e., computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine and special radiographic procedures. The student is sent to an affiliated hospital that has the required special imaging equipment to give the hands-on experience to develop competency in each of three areas chosen by the student. The student will spend one month in each selected area. Prerequisites: The student must have completed all academic coursework in the Medical Imaging program with grade “C” or better and be a Registered Technologist.

RDSC 411A, RDSC 411B Special Radiologic Science Externship
(411 A, 0-18-7)(411B, 0-22-8)
This two-term practicum is designed to develop skills of the degree completion student in special imaging modalities of computed tomography, magnetic resonance imaging, cardiovascular/interventional technology, mammography, quality assurance, nuclear medicine technology, or sonography. The student selects a local hospital or medical center that has the necessary equipment. Upon approval of the facility, the student begins a supervised experience to develop competencies in each of three chosen areas. Prerequisites: Be an ARRT registered technologist in good standing, and have completed all the academic coursework in the Medical Imaging curriculum with grade “C” or better.

RDSC 471 Clinical Imaging Education I
(1-0-1)
Development and application of clinical education objectives relating to medical imaging technology. Instruments used to evaluate student clinical performance and competence. Prerequisite: RT(R) (ARRT).
(REE) Renewable Energy Engineering

REE 107, REE 207, REE 307, REE 407 Seminar
(Hours to be arranged each term.)

REE 201 Introduction to Renewable Energy
(3-0-3)
An introduction to renewable energy. Topics include photovoltaics, solar thermal systems, green building, fuel-cells, hydrogen, wind power, waste heat, biofuels, wave power, tidal power and hydroelectric. Discussions of economic, environment, politics and social policy are integral components of the course.
Prerequisite: MATH 111.

REE 243 Electrical Power
(3-3-4)
Fundamentals of electrical power; three-phase power systems, power factor, harmonics, resonance, PF correction. Electrical power systems: power transformers; transmission lines, distribution and transmission, HVAC and HVDC. Power systems representation: single-line diagrams, per-unit representation. Symmetric and asymmetric faults. Power flow analysis.
Prerequisites: EE 223; MATH 252 with grade “C” or better.

REE 253 Electromechanical Energy Conversions
(2-3-3)
AC machines, including single phase, split-phase and three-phase (induction and synchronous machines) motors and generators; introduction to power switching devices, speed control and brushless DC motors. DC machines including shunt, series and compound. Control devices and circuits, including ladder diagrams.
Prerequisite: EE 223; MATH 252 with grade “C” or better.

REE 331, Fuel Cells
(2-3-3)
Introduction to fuel cell technologies: PEM, PAFC, AFC, SOFC, MCFC and DMFC systems. Fuel cell components and systems; field flow plates, electrolytes, electrode materials, electrode catalysts, on-board reformers. Portable devices, utility-scale power production, transportation systems. Fuel types and fuel storage.
Prerequisites: CHE 260 and PHY 222 with grade “C” or better.

REE 333 Batteries
(2-3-3)
This course covers fundamentals of the most important battery types including alkaline, zinc-air, lead-acid, nickel-cadmium, nickel-metal hydride, lithium ion and lithium polymer. Applications include stationary, transportation and portable batteries. The lab deals with battery system design, testing and prototype assembly.
Prerequisite: CHE 260.

REE 335 Hydrogen
(2-3-3)
This course will cover hydrogen production, storage, distribution and use. Specific energy scenarios such as renewable hydrogen cycles will be explored focusing on transportation applications. The concept of hydrogen economy will be discussed in the context of global energy crisis.
Prerequisite: CHE 260.

REE 339 Senior Project I
(1-3-2)
Selection, definition, and analysis of a problem suitable for a renewable energy engineering senior project prior to actual project development. Includes consideration of project parameters, and implications, proposal of alternate solutions, and justification of selected solution. Culminates in the writing of project proposal.
Prerequisite: WRI 327.

REE 344 Nuclear Energy
(3-0-3)
Prerequisites: CHE 222, PHY 223.

REE 345 Wind Power
(3-0-3)
Prerequisites: REE 253 or MECH 326. PHY 222.

REE 346 Biofuels and Biomass
(2-3-3)
Introduction to power production from biomass resources. Historical uses of biomass resources. Biomass as a solar energy store; forestry and agricultural sources, crop wastes. Recycled sources; municipal solid wastes, landfill gas. Gaseous fuels; anaerobic digestion, gasification, liquid fuels, fermentation, hydrolysis, transesterification. Prerequisites: CHE 202, or CHE 222, PHY 222.

REE 347 Hydroelectric Power
(3-0-3)
Prerequisites: MECH 318; MECH 326 or REE 253.

REE 348 Solar Thermal Energy Systems
(3-0-3)
Introduction to solar thermal energy systems for residential, commercial and industrial applications. Solar radiation; topics in heat transfer; flat plate and concentrating collectors; non-imaging optics; applications including water heating, building heating, cooling, industrial process heat, distillation, solar thermal power systems.
Prerequisites: MECH 323, PHY 223.

REE 412 Photovoltaic Systems
(3-0-3)
The solar resource, sun charts, site assessments. Grid-connected and stand-alone systems. Module and array performance. PV system components including batteries, modules, charge controllers, maximum power point trackers, inverters. Economic considerations including investment tax credits, present-value analysis, IRR. Advanced PV materials.
Prerequisite: EE 343.

REE 413 Electric Power Conversions Systems
(3-0-3)
Prerequisites: EE 419, REE 412.
REE 427 Greenhouse Gas Accounting/ Footprints
(3-0-3)
Course topics include US and international greenhouse gas (GHG) management policies. GHG assessment methods and tools, emissions trading programs, climate risk and risk management, data and information sources, measurement standards and protocols and related sustainability concepts and policies. Course also listed as ENV 427 (cannot be used for graduation credit by students who have taken ENV 427). Prerequisites: Junior or senior standing, MATH 361 and WRI 227.

REE 439 Building Energy Auditing and Management
(3-0-3)
Evaluating building thermal/electric/process loads, including lighting, hot water, HVAC and central plant systems, industrial refrigeration and motors. Opportunities for managing energy use through controls and operations/maintenance strategies. Roles of commissioning, energy auditing, renewables and economic analysis in reducing energy use. Prerequisite: MECH 433.

REE 449 Senior Project II
(0-6-2)
A continuation of REE 339. Prototype construction of project solution begins. Written documentation is produced including design calculations and functional analysis of hardware and/or software needed for project solution. Prerequisites: WRI 327, REE 339.

REE 451 Geothermal Energy and Ground-Source Heat Pumps
(3-0-3)
An introduction to geothermal energy resources. Discussion of heat flow mechanisms. Investigation into heat exchange systems including: binary, flash, double flash, total flow. Application of thermal dynamics in analysis, design and control of heating/cooling systems. Prerequisite: MECH 323.

REE 453 Power System Analysis
(3-0-3)

REE 454 Power System Protection and Control
(3-0-3)
Protection systems overview: protective devices; coordination and sequencing of relays; grounding practices; impedance protection. Methods of power systems operation and control; load-frequency control, automatic generation control. Modeling power system protection and control using power system analysis software, emphasizing renewable resources. Prerequisite: REE 453.

REE 455 Energy-Efficient Building Design
(3-0-3)
Principles of integrated, energy-efficient building design. Interpretation/application of codes, standards. Use of software tools for modeling, simulation of building energy systems. Daylighting, natural ventilation, architectural features of passive solar buildings. Inclusion of renewable resources and net-zero designs. Life-cycle economic analysis. Prerequisite: MECH 433.

REE 459 Senior Project III
(0-6-2)
Completion of the project proposed in REE 339 and designed in REE 449. Documentation with specifications, functional description, calculations, test results, schematics, graphs, flowcharts, parts lists, diagrams and photographs become part of the project final report. The student defends their project before a review panel. Prerequisite: REE 449.

REE 463 Energy Systems Instrumentation and Control
(2-3-3)
Application of electrical and mechanical sensors, data acquisition and logic controllers as applied to energy systems. Determination of physical parameters necessary for control and data-logging. Methods of calibration and correction. Lab projects employ programmable logic controllers. Prerequisites: EE 321.

REE 465 Renewable Energy Transportation Systems
(3-0-3)
Renewable energy transportation systems including fuel cells, hybrid gasoline-electric engines, electric vehicles, bio-diesel, flex-fuel vehicles, high-efficiency diesel engines, gas turbine prime mover systems. Topics include fuel-air mixing, fuel storage, fuel delivery, cooling, fuel leak detection, chemical safety, and electrical power control systems. Prerequisites: REE 253 or MECH 326. MECH 323.

(RCP) Respiratory Care Program

RCP 100 Introduction to Respiratory Care
(2-0-2)
A survey of the development of respiratory care including an introduction to quality and evidence-based respiratory care, patient safety, communication, recordkeeping, principles of infection control, medical ethics, physical principles and computer applications in respiratory care.

RCP 107, RCP 207, RCP 307, RCP 407 Seminar
(Hours to be arranged each term.)
An introduction to the effects of ineffective breathing on carbon dioxide removal and oxygen delivery. Basic pulmonary mechanics are described. The vascular effects of hypoxemia are fully explored. Oxygen therapy and Continuous Positive Airway Pressure are introduced.

RCP 221 Introduction to Patient Assessment
(5-0-5)
Acquisition and interpretation of the patient history, physical examination, vital signs, laboratory data including arterial blood gases and chest radiograph. Collaborative activities include the acquisition, analysis and communication of findings. Prerequisite: Acceptance into Respiratory Care Program or instructor's consent.

RCP 231 Pulmonary Physiology
(3-3-4)
Pulmonary physiology including mechanics of ventilation, gas diffusion, acid-base regulation, oxygenation, and the physiologic advantage of structure. Gas laws and surface tension as applied to the understanding of clinical problems. Prerequisite: BIO 233.

RCP 235 Arterial Blood Gases
(2-0-2)
Chemistry and classification of acid-base balance including determination of compensation and pathophysiologic causes. Assessment of partial pressures of oxygen, saturation and total oxygen delivery. Prerequisite: RCP 231.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
RCP 236 Cardiopulmonary Dynamics
(3-3-4)
Exploration of pulmonary mechanics as measured by spirometry. Cardiovascular hemodynamics including cardiac electrophysiology, rhythm recognition and the measurement and interpretation of Systemic Vascular Resistance and Pulmonary Vascular Resistance, Central Venous Pressures, Pulmonary Artery and Pulmonary Capillary Wedge Pressures.

RCP 241 Respiratory Gas Therapeutics
(3-3-4)
Physical and chemical applications of medical gases and humidity therapy to patient care. The transportation, regulation and dissemination of compressed gases. Clinical decision-making strategies for Oxygen titration. Prerequisite: Admission to Respiratory Care Program.

RCP 252 Cardiopulmonary Pharmacology
(4-0-4)
A study of the administration, pharmacokinetics, administration and actions of medications. Emphasis is placed on bronchodilators, steroids, mucolytics and antileukotriene agents. Vasoactive, antiarrhythmics, diuretics, sedatives, antimicrobials and neuromuscular blocking agents are introduced. Prerequisite: CHE 360.

RCP 326 Disaster Preparedness
(1-0-1)
Preparation for unusual biological disasters. Case-based instruction on anthrax, SARS, influenza, bird flu, tuberculosis, emergency room hospital violence and unrest, evacuation and loss of services caused by hurricanes, floods and fire. Prerequisite: RCP 235.

RCP 335 Pulmonary Rehabilitation and Geriatrics
(4-0-4)
Introduction to the development of and participation in pulmonary rehabilitation teams for the restoration of individual capacity. Behavioral considerations associated with pulmonary disease, age and social support. Prerequisite: RCP 235.

RCP 336 Hyperinflation Therapies
(2-3-3)
Study and evidence-based application of PEEP, CPAP, bi-level ventilation, IPPB, and incentive spirometry. Flutter valve, PEP, high frequency chest wall oscillation and other methods of improving bronchial hygiene and lung volume. Prerequisite: RCP 241.

RCP 337 Pulmonary Pathology
(4-0-4)
Case-based approach to the understanding, evaluation and treatment of pulmonary disease. Recognition of obstructive and restrictive disease patterns as well as the classification of acid-base and oxygenation disorders. Classification, application and pharmacodynamics of common pulmonary medications are discussed. Prerequisite: RCP 235.

RCP 345 Cardiopulmonary Diagnosis and Monitoring
(2-3-3)
Collaborative investigation, practice, calibration and interpretation of spirometry, body plethysmography, diffusion capacity, helium dilution, seven minute nitrogen washout, cardiopulmonary stress testing. 12 lead ECG acquisition, dysrhythmia recognition, arterial blood gas instrumentation. Prerequisite: RCP 337.

RCP 350 Introduction to Clinical
(1-6-3)
Orientation to clinical practice in hospitals. Requires successful criminal background check, drug screening, completion of training in computer charting and compliance with Health Insurance Portability and Accountability Act (HIPAA). Competence developed in the area of basic patient assessment, oxygen therapy, aerosol therapy, medical charting and professional communication. Prerequisite: RCP 337.

RCP 351 Mechanical Ventilation I
(3-3-4)

RCP 352 Mechanical Ventilation II
(3-3-4)
Description and analysis of the adult patient-mechanical ventilator system including the initiation, assessment, management and discontinuation. Prerequisite: RCP 351.

RCP 353 Mechanical Ventilation III
(3-3-4)
Advanced topics in mechanical ventilation including transport, dual modes, neonatal and pediatric mechanical ventilation. Prerequisite: RCP 352.

RCP 356 Clinical Simulation
(3-0-3)
The practice and measurement of critical thinking in the context of computer branching logic simulations. Students use organized sequential topical examinations to review and measure retention of respiratory care content. Passage of secure national review examination required. Prerequisite: RCP 337.

RCP 386 Critical Care
(5-0-5)
Analysis and application of critical care techniques with an emphasis in cardiovascular management and assessment. Cardiovascular catheters and hemodynamics, advanced rhythm recognition, and the essentials of advanced cardiac life support. Prerequisite: RCP 337.

RCP 388 Neonatal and Pediatric Respiratory Care
(3-3-4)
Survey of perinatal physiology with an emphasis on mechanical ventilation, the application of oxygen, medications, positive pressure, resuscitative efforts and evaluations as applied to the neonatal and pediatric patients. Instruction in neonatal resuscitation meets the standards established by the American Academy of Pediatrics. Prerequisite: RCP 241.

RCP 440 Case Management/Credentials I
(3-0-3)
Current clinical cases used as the basis for scholarly research and discussion. Students design a research-based senior project in the field of respiratory care, including interviews, research, literature review and formal presentation. National examination required. Prerequisite: Completion of all academic coursework in the Respiratory Care Program prior to the senior year.

RCP 441 Case Management/Credentials II
(3-0-3)
Current clinical cases used as the basis for scholarly research and discussion. Students continue work on senior project in the field of respiratory care, including interviews, research, literature review and formal presentation. National examination required. Prerequisite: RCP 440.

RCP 442 Case Management/Credentials III
(3-0-3)
Current clinical cases used as the basis for scholarly research and discussion. Students complete work on senior project in the fields of respiratory care, including formal presentation of the project. Passage of two national examinations required. Prerequisite: RCP 441.
RCP 450, RCP 451, RCP 452 Clinical Care I, II, III
(0-36-12)
Students must complete three terms (nine months) of clinical experience in both adult and neonatal respiratory care, to include cross-disciplinary communication and management of mechanical ventilation, hemodynamics, oxygen and aerosol therapy, advanced cardiac life support, newborn resuscitation in the obstetrical unit, emergency room and pulmonary physiology laboratory. Optional limited experience may be available in polysomnography, home care, pulmonary rehabilitation and research. Requires advanced levels of competence in mechanical ventilation and patient management in the adult critical care units. Students under the direct supervision of qualified respiratory therapists and physicians. Prerequisite: For RCP 450—completion of all academic coursework in the Respiratory Care Program prior to the senior year. A final grade of “C” or better must be earned in all professional courses (RCP), communication courses and science/mathematics courses to continue in the program. For RCP 451—RCP 450; for RCP 452—RCP 451. Corequisite: For RCP 450—RCP 440; for RCP 451—RCP 441; for RCP 452—RCP 442.

RCP 486 Extreme Physiology
(2-0-2)
Physiologic adaptations to gas exchange and transport which occurs during the challenges of neonatal transition, exercise, high altitude and high-pressure environments. Prerequisite: RRT credential and admission to degree completion program.

RCP 487 Expert Mechanical Ventilation
(2-0-2)
Recognition of levels of quality in mechanical ventilation. Practicing clinicians balance experience with current evidence-based recommendations for mechanical ventilation in order to develop a hierarchy of quality care. Includes selection of new modes, patient-ventilator synchrony, the reduction of medical errors and ventilator associated pneumonia. Prerequisite: RRT credential and admission to degree completion program.

RCP 488 Respiratory Care Innovations
(2-0-2)
Exploration of new opportunities to improve access to respiratory care. Reduction of disease through the expansion of respiratory care. Student projects focused on networking among students and faculty and across institutional, professional and nonprofit lines to implement improvements in health and education. Prerequisite: RRT credential and admission to degree completion program.

(SPAN) Spanish
SPAN 101, 102, 103 First Year Spanish
(4-0-4)
An introduction to elementary Spanish. A three-term sequence for beginners. Emphasis on vocabulary building, listening comprehension, phonetics, oral practice, and elements of grammar. Elementary readings and writings will be required. Prerequisite: Taken in sequence or instructor consent.

SPAN 107, SPAN 207, SPAN 307, SPAN 407 Seminar
(Hours to be arranged each term.) SS

SPAN 201, 202, 203 Second Year Spanish
(4-0-4) H
Intensive introduction to the language. Course aims at progressive development of fluency through extensive exposure to the language in real situations. Comprehension-based approach. Prerequisite: SPAN 103 or instructor consent. SPAN 201, SPAN 202, SPAN 203 taken in sequence or instructor consent.

(SOC) Sociology
SOC 107, SOC 207, SOC 307, SOC 407 Seminar
(Hours to be arranged each term.) SS

SOC 204 Introduction to Sociology
(3-0-3) SS
Survey of human relationships and interaction of organized groups and institutions in modern society. Emphasis on attitudes, values, beliefs, customs and change within our complex social structure.

SOC 210 Marriage and Family Living
(3-0-3) SS
Personal problems of the married couple in everyday living with an emphasis on adult lifestyles, relationships, sexual roles and attitudes, family planning, family finances, and divorce and remarriage.

SOC 304 Criminology
(3-0-3) SS
Analysis of criminal behavior from theft to homicide. Discussion of the definition of criminal behavior, varieties of crime and the criminal justice system. Prerequisite: SOC 204.

(SPE) Speech
SPE 107, SPE 207, SPE 307, SPE 407 Seminar
(Hours to be arranged each term.)

SPE 111 Fundamentals of Speech
(2-2-3) C
Projects in public speaking with emphasis on content, organization, and speaker adjustments to various situations; dynamics of the speaker-listener interaction; and appropriate language usage. Exercises in listening, criticism, logic, support, and ethics.

SPE 314 Argumentation
(2-2-3) C
Argumentation as part of human interaction and inquiry. Examination of arguing to gain adherence and as a way of reasoning. Practice in public speaking, debate, ethics and critical thinking. Prerequisite: SPE 111.

SPE 321 Small Group and Team Communication
(2-2-3) C
Instruction and experience in decision making through group processes with objectives of developing competent team leaders and participants. Participation in and evaluation of a variety of group communication exercises. Prerequisite: SPE 111.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication
H – Humanities
HP – Humanities Performance
SS – Social Science.
For more information see page 38.
(VAS) Vascular Technology

VAS 107, VAS 207, VAS 307, VAS 407 Seminar
(Hours to be arranged each term.)

VAS 214 Vascular Anatomy
(3-3-4)
Detailed consideration of the gross and microscopic anatomy of arteries and veins throughout the human body. Laboratory includes cadaver dissection, anatomical models, and an introduction to instrumentation and basic ultrasound scanning techniques.
Prerequisite: MIT 103 with grade “C” or better.

VAS 225 Patient Management Practices
(2-3-3)
Current issues in the practice of vascular technology with emphasis on basic concepts of patient care, infection control procedures, and the technologist’s responsibility to the patient, the patient’s family, and the vascular technology profession.
Prerequisite: VAS 245 with grade “C” or better.

VAS 245 Peripheral Venous Disease
(3-3-4)
Investigation to the pathophysiology of venous disease with emphasis on theoretical and practical considerations of diagnostic methods of venous testing. These include clinical assessment, plethysmography, and duplex imaging of lower extremity veins.
Prerequisite: VAS 246.

VAS 246 Peripheral Arterial Disease
(3-3-4)
Investigation of the pathophysiology of arterial occlusive disease with emphasis on the theoretical and practical considerations of diagnostic methods of arterial testing. These include clinical assessment, physiological evaluation and duplex imaging of lower extremity arteries.
Prerequisite: VAS 214.

VAS 335 Radiographic Vascular Anatomy
(3-0-3)
Survey of medical imaging modalities ancillary to vascular sonography including angiography, digital subtraction angiography, computerized tomography and magnetic resonance angiography. Student teams will prepare case studies comparing the efficacy of these imaging modalities.
Prerequisite: VAS 214 with grade “C” or better.

VAS 337 Survey of Echocardiography
(3-0-3)
A survey of basic echocardiography with emphasis on normal cardiac anatomy and abnormal disease states. Standard sonographic imaging techniques of adult echocardiography, including instrumentation and protocols.
Prerequisites: BIO 220, VAS 246.

VAS 365 Abdominal Vascular Disease
(3-3-4)
Diagnostic methods of abdominal and visceral vascular disease testing. Includes aorto-iliac, renal artery and kidney, mesenteric system, liver system, and transplantations. Laboratory emphasizes advanced instrumentation and scanning techniques, patient interviews, clinical signs and symptoms, physical assessment and findings.
Prerequisite: VAS 246.

VAS 366 Special Circulatory Problems
(3-3-4)
Diagnostic methods of testing the efficacy of vascular surgical procedures and interventions. To include arterial bypass grafts, organ transplants and dialysis access grafts. Venous and arterial mapping, upper extremity venous and arterial disease testing, IVUS, pseudoaneurysm treatment and compartment syndrome will also be covered.
Prerequisite: VAS 365.

VAS 367 Cerebrovascular Disease
(3-3-4)
Theoretical and practical considerations of diagnostic methods of testing arterial and venous diseases affecting the vasculature of the head and neck including the intracerebral vessels. Laboratory includes advanced instrumentation and scanning techniques, and instruction on patient interviewing, clinical signs and symptoms, physical assessment and findings.
Prerequisites: VAS 366, VAS 375.

VAS 375 Survey of Abdominal Sonography
(3-0-3)
A survey of basic abdominal sonography with emphasis on normal abdominal anatomy and abnormal disease states. Standard sonographic imaging techniques of general abdomen, instrumentation, and abdominal protocols.
Prerequisites: VAS 365.

VAS 376 Cerebrovascular Disease
(3-3-4)
Theoretical and practical considerations of diagnostic methods of testing arterial and venous diseases affecting the vasculature of the head and neck including the intracerebral vessels. Laboratory includes advanced instrumentation and scanning techniques, and instruction on patient interviewing, clinical signs and symptoms, physical assessment and findings.
Prerequisites: VAS 366, VAS 375.

VAS 385 Vascular Laboratory Management
(3-0-3)
Focus on human resource skills as necessary to manage a vascular laboratory. Includes the interview process, hiring and firing, as well as employee performance evaluation. Other topics will include reimbursement, licensure, accreditation and other management issues.
Corequisite: VAS 388.

VAS 388 Externship Preparation
(2-0-2)
Review and summarization of key concepts in Vascular Technology. Focus is on patient care and interpersonal scenarios the externship student will likely face while in the hospital environment or independent vascular lab. Review and discussion of the Vascular Technology Externship Handbook.
Prerequisites: VAS 366, VAS 375 with grade “C” or better.
Corequisites: VAS 367, VAS 385.

VAS 420 Vascular Technology Externship
(0-40-15)
All B.S. students complete four terms (12 months) of clinical experience in Vascular Technology at an affiliated clinical site. Students work under the direct supervision of Registered Vascular Technologists and provide monthly log sheets and evaluation forms. Students prepare clinical case studies each term.
Prerequisites: All academic coursework in the Vascular Technology curriculum.

VAS 420A, 420B Special Vascular Technology Externship
(420A, 0-22-8)(420B, 0-18-7)
This two-term special externship is designed for the degree completion student. Students working in a clinical vascular setting will prepare clinical case studies as well as rotate through special imaging modalities.
Prerequisites: Be an ARDMS or CCI Registered Vascular Technologist in good standing, and have completed academic coursework in the Medical Imaging curriculum with grade “C” or better.
(WRI) Writing

WRI 107, WRI 207, WRI 307, WRI 407 Seminar
(Hours to be arranged each term.)

WRI 115 Introduction to Writing
(3-0-3)
Focuses on sentence structure, paragraph coherence, and essays. Regular writing and feedback develop student competency in college level writing. May not be used to meet general education requirement or graduation credit.
Prerequisites: Writing ability as demonstrated by SAT/ACT score and/or writing sample.

WRI 121 English Composition
(3-0-3) C
Introduction to critical reasoning and analysis. Students explore connections between thesis, structure, tone and purpose; practice the writing process; and apply rhetorical strategies. Focus on academic reading, writing and research skills.
Prerequisite: Writing ability as demonstrated by SAT/ACT score and/or writing sample.

WRI 122 English Composition
(3-0-3) C
Designed to develop skills in ethical argument, research, and critical thinking. Multi-page papers, including an argumentative research paper, required. Students draft, compose, organize, and revise with focus on audience, effective style, and overall rhetorical effect.
Prerequisite: WRI 121 with grade “C” or better.

WRI 123 English Composition
(3-0-3) C
The formal research paper. Designed primarily for students in the college transfer program but may be taken as an elective by students in any curriculum.
Prerequisite: WRI 122.
Pre- or corequisite: SPE 111.

WRI 214 Business Correspondence
(3-0-3) C
Theories and strategies governing written correspondence. Designed to equip the student to perform effectively in a variety of business writing situations. Major emphasis on practical applications.
Prerequisites: WRI 122 or equivalent, and keyboarding ability.

WRI 227 Technical Report Writing
(F,W,S)(3-0-3) C
Practice in techniques of gathering, organizing, and presenting technical information. Technical reports derived from realistic situations found in the student’s major will be written.
Prerequisite: WRI 122.
Pre- or corequisite: SPE 111.

WRI 305 Writing for the Marketplace
(As required)(3-0-3)
Designed to introduce the basics of professional writing – fiction, personal experience, and technical articles, etc. for publication, including marketing and manuscript preparation. Each student must submit at least one article or story (8 pages or more) for publication during the term.

WRI 321, WRI 322, WRI 323 Advanced Technical Communication
(S,F,W)(1-0-1) C
Processes involved in technical communication; presents suggestions for solutions to the variety of problems emanating from junior project situations. This sequence is to be taken in consecutive terms (S,F,W) and is offered for the convenience of students whose junior or senior projects require a full year for completion. The three-term sequence substitutes for WRI 327.
Prerequisite: WRI 227.
Corequisite: Senior project.

WRI 326 Technical Communication for Health Care Professionals
(3-0-3)
Advanced experience and practice in technical communication with emphasis on documentation related to the health care profession. A distance education course offered to students pursuing health-related degree completion programs.
Prerequisite: Introductory technical writing course or equivalent.

WRI 327 Advanced Technical Writing
(F,W,S)(3-0-3) C
Processes involved in technical writing and methods of preparing technical data; offers a variety of writing problems to provide opportunities for the student to develop precision in statement and in graphic presentation.
Prerequisite: WRI 227.

WRI 328 Technical Journalism
(2-3-3) C
Production of a weekly newspaper (The Edge). Includes journalistic writing, design, layout, and production, as well as proposals, memos, business correspondence, and recommendation reports.
May substitute for WRI 327 with approval of student’s major department.
Prerequisites: WRI 227 and consent of instructor and advisor.

WRI 350 Documentation Development
(3-0-3) C
Provides students with basic tools for preparing documentation. Course focuses on usability of the documentation and covers planning and scheduling, audience evaluation, use of appropriate examples and illustrations, style, editing technique, organization and research.
Prerequisite: WRI 227.

WRI 410 Proposal and Grant Writing
(3-0-3) C
Provides theory and skills in proposal writing for seeking funding from public and private agencies and for preparing proposals in business and industrial settings. Focuses on the process of preparing proposals, including analyzing audiences, conducting research, organizing, writing, and editing.
Prerequisite: WRI 227.

WRI 415 Technical Editing
(3-0-3)
Focuses on the role of the technical editor in business and industry. Examines the publishing process, the dynamics of the editor/writer relationship, and mechanics and techniques of proofreading and copyediting. Provides considerable practice in copyediting and proofreading manuscripts.
Prerequisite: WRI 227 or appropriate work experience.

WRI 420 Document Design
(2-3) C
Applies publishing and graphic arts principles to the preparation of professional publications and oral presentation materials. Includes typography, design principles, the use of graphical elements, and integration of text and graphics.
Prerequisites: SPE 111, WRI 227, word processing ability.

Courses with the following notation fulfill the appropriate general education requirements:
C – Communication H – Humanities HP – Humanities Performance SS – Social Science. For more information see page 38.
University Services

Registrar’s Office

Wendy Pedersen, University Registrar, Institutional Residency Officer
Sonja Bell, Assistant Registrar

Snell Hall, lower level
(541) 885-1300
registrar@oit.edu
www.oit.edu/registrar

Major functions of the Registrar’s Office are the maintenance of student records, registration, Web services, grade processing, transfer-credit evaluation and community college articulation, degree checking, graduation, scheduling, veterans’ services, enrollment certification and the catalog.

Academic Information
The class schedule, introductory pages to the Class Schedule and General Catalog contain information about academic regulations, registration instructions and college procedures and policies. Students should be familiar with this information. These documents can be found on the OIT Web site at www.oit.edu/registrar.

Student Records
The Registrar’s Office maintains information regarding academic progress, including grade reports and permanent academic records (transcripts). Students and alumni may request transcripts at any time.

The Registrar’s Office also collects and maintains accurate information about students, such as address, curriculum (major) and advisor’s name. Much of this information is required for local and state enrollment reporting and for accurate mailing addresses. Changes to personal data such as address or name should be reported to the office promptly.

Privacy Rights
Under the Family Educational Rights and Privacy Act of 1974, students are entitled to review records, files, documents and other materials that contain information maintained by the university. Students may challenge information considered inaccurate or misleading. A list of university records, the responsible custodians and the university policy on records are available in the Registrar’s Office.

Directory Information
The following information is considered Directory Information and may be made available to the public unless you restrict its release by written notice to the University Registrar by the last day to register or add courses for the current term.

OIT designates the following items as Directory Information: student name, current address, current telephone number, dates of attendance, classification (year in school), major field of study, most recent previous school attended, degrees and awards received (including dates), hometown, past and present participation in officially recognized activities and sports; and for members of athletic teams: age, height and weight.

Registration
The Registrar’s Office publishes the class schedule and registration instructions for each term on the OIT Web site at www.oit.edu/registrar. It also maintains class rosters for instructors and processes grades. Personal information, class schedules and grades, as well as unofficial transcripts, are on OIT’s Web for Student and also available in the office.
Academic Agreements

Marla Edge, Director

DOW E217
(541) 885-1034
marla.edge@oit.edu

Brandy Brown, Articulation and Dual Credit Coordinator

DOW E213
(541) 885-1844
brandy.brown@oit.edu

www.oit.edu/prospective-students/academic-agreements
academicagreements@oit.edu

OIT’s Office of Academic Agreements cultivates and maintains partnerships with area high schools, community colleges, and universities that result in increased access and smooth transitions for students. The office forges meaningful relationships with educational partners by connecting faculties, coordinating partnerships, participating in pathways and other local and statewide advisory boards and providing internal and external communication and promotion of partnerships. The office develops dual enrollment agreements with colleges and universities, coordinates articulation agreements, and develops and manages other academic agreements.

Information about the work of the Academic Agreements Office, Dual Enrollment with colleges and universities, dual credit with high schools and specific articulation agreements can be found on the web page or by contacting the office.

Athletics, Recreation and Fitness

Mike Schell, Director

PE, Room 116
(541) 885-1634
michael.schell@oit.edu

The Oregon Tech Athletic Department as well as the Tech Fit Center mission is to facilitate growth and development of students by providing a broad-based athletic program that creates educational opportunities through the medium of competition at the collegiate level as well as the opportunity to benefit personal health and fitness to the campus community through the Tech-Fit facilities and educational classes offered. OIT’s Athletics, Recreation and Fitness Education Center has many facilities, fitness and education opportunities. An expansion off the front of the center provides students with a larger cardiovascular workout area. A free-weight room stocked with all the needed equipment is located downstairs on the east side. A six-lane, 25-meter swimming pool is used for swim teams and water polo as well as lap swimming and open recreation. There are six tennis courts (four lighted), an eight-lane, 400-meter, all weather surface track and a lighted basketball court for your outdoor recreation. Also, watch for a lawn volleyball net as it tends to move around campus.

The Oregon Tech competitive athletics teams include men’s and women’s basketball, cross country, soccer and track; women’s volleyball, women’s softball and men’s baseball.

OIT’s Athletics, Recreation and Fitness Education Center contributes to campus life by providing a focal point for social interaction, leadership development, involvement in peer support groups and entertainment.

Competitive Athletic Teams

The Oregon Tech Athletic department is dedicated to preparing our student-athletes for professional and personal success in the real world by learning the values of integrity and excellence on the court, field and in the classroom. To that end, we are committed to field teams with the talent and ability to compete at the top of the Cascade Collegiate Conference, as well as regionally and nationally in the NAIA while representing Oregon Tech with dignity and class.

The privilege of participation in intercollegiate athletics and dedication to team goals provides a classroom where students may experience the development of skills, sportsmanship, loyalty, self-discipline and responsibility while learning the values of winning, losing and competing. The Oregon Tech athletic program contributes to campus life by providing a focal point for social interaction, leadership development, involvement in peer support groups and entertainment.

Intramural Sports

The Oregon Institute of Technology intramural program offers a variety of individual and team events in three divisions: men, women and co-ed. We hope that our program and its diversity will invite each of you to participate in at least one event during the academic year. Call 885-1390 for information about intramural sports programs or see the Web site for rosters and information.

Tech Fit

The Tech Fit Center is free to all OIT students enrolled in eight or more credits per term. Students taking less than eight credits or community members may sign up in either credit or non-credit classes for a minimal charge. For more information call 885-1634.
Bookstore,
The Paper Owl

Lane Hickman, Director

College Union
(541) 885-1050
paperowl@oit.edu

The Paper Owl is a full-service campus store owned and operated by OIT. The operational philosophy allows prices on course books to average considerably less than those found at most university bookstores. Besides course books, the Paper Owl carries a wide variety of contemporary items that students prefer: school, office and dorm supplies, scientific and business calculators, writing instruments, drafting supplies, emblematic clothing and gifts, computer supplies, electronic parts and useful reference books, among others.

The Paper Owl services include its popular book reservation program. Students submit a reservation form and bookstore staff reserve requested titles. Students may pay for the books at the time of pick up, or prepayment may be arranged with the Student Charge Plan, eliminating the need to stand in a long line.

The Paper Owl has a high percentage of used books in stock. The book buy-back program, also very popular, allows students to sell back many books they do not want to keep after taking a course. Other services include gift wrapping and special pricing programs on computer software, electronic parts and calculators. Friendly service is the hallmark of The Paper Owl. Students can order or reserve their course books and shoppers can order merchandise on the bookstore’s Web site at www.bookstore.oit.edu.

Affirmative Action and Equal Opportunity

Ron McCutcheon, Affirmative Action Officer

Snell Hall, Room 108
(541) 885-1108

The Affirmative Action Officer is charged with oversight and enforcement of OIT’s compliance with relevant federal, state and university civil rights statutes and regulations. Complaints and grievances related to unlawful discrimination and harassment under Title IX, the Civil Rights Act, the Rehabilitation Act, the Americans With Disabilities Act and employment law are to be directed to the Officer for resolution. The Officer also coordinates OIT’s Equal Opportunity programs and activities which seek to maintain a learning and working environment that fosters diversity, inclusion and personal success.

Inquiries, requests for assistance, or grievances pertaining to OIT policies on discrimination, harassment, equal opportunity or access to programs and services should be directed to this office, located in the Human Resources Office in Snell Hall.

Assessment

Sandra Bailey, Director

Purvine Hall, 185
(541) 885-1915
sandra.bailey@oit.edu

OIT actively engages in assessment of both degree programs and broad institutional student learning outcomes (ISLOs). The director of Assessment, in conjunction with the Executive Committee of the Assessment Commission, leads the campus in these efforts.

Campus Dining

Chris Dalla, Administrator

College Union, 116
(541) 885-1036
chris.dalla@oit.edu
www.oit.edu/dining

Campus Dining offers the entire campus community a wide variety of food choices for take-out or to eat-in at the Marketplace Cafe, upstairs in the College Union. There is a declining-balance program available to commuters, faculty and staff; It is convenient, offers bonus dollars on deposits to help stretch individual budgets and can be charged to students’ individual accounts. Other options are available at the Bistro espresso shop in the College Union, the espresso shop in the Martha Anne Dow Center for Health Professions, or Duffie’s espresso cart in Purvine Hall; there is also a Subway sandwich shop in the College Union. Campus Dining offers soups, salads, sandwiches, burgers and many other options throughout the day. To help students with college expenses, the Campus Dining operation employs more than 80 student workers.
Career Services
Joan Loustalet, Director
Jan Goodyear, Recruitment Manager
Learning Resource Center, 228
(541) 885-1020
career@oit.edu

The Career Services Office supports student and alumni efforts to develop and achieve career goals. Services include: individual career advising; workshops and classroom presentations on résumé-writing, job interviewing, job search and applying to graduate school; on-campus employer recruitment, whereby companies and government agencies interview students for career and internship opportunities; Career Fairs, which bring employers and students together on campus to discuss career opportunities informally; career-resource materials and job listings; and a résumé referral service, which supports student applications for employment and graduate school.

Career Services also coordinates the Student Employment Service, which provides part-time employment for students both on and off campus with local employers. Positions are available through the College Work-Study program or through regular employment.

College Union
Christopher Dalla, Director
(541) 885-1036
Information Desk, CU 116
(541) 885-1030
www.oit.edu/collegeunion

The College Union is the center of student activity on campus. Located within the Union are the student government offices, Campus Arts and Entertainment, the Diversity Center, Student Services staff, Campus Dining operations, The Edge student newspaper, the Paper Owl bookstore, the campus mail center, the Outdoor Program, the Women's Resource Center and the main campus auditorium. In addition, there are comfortable study and lounge areas and meeting rooms for both student and community use. Coffee house functions, lectures, special classes, concerts and dinner theaters, art shows, dances and movies are among the typical events scheduled in this facility.

For information about using space in the College Union or to make a reservation, contact the CU Information Desk located on the lower level, south of the main entrance.

Disability Services
Joan Loustalet, Director
Bill Proebstel, Academic Specialist
Crystal Murphy, Program Specialist
Learning Resources Center, 228
(541) 851-5179
(541) 885-1072 - text telephone
www.oit.edu/ds
access@oit.edu

The Office of Disability Services coordinates academic, housing and program services accommodations for students with documented physical, learning, sensory, psychiatric and other disabilities. Students with disabilities who anticipate needing services on campus should contact this office well in advance of attendance at OIT to arrange for timely services.

Document Resource Center
Lane Hickman, Supervisor
College Union
541-885-1058

Operated by Ikon Financial Systems, the DRC is a one-stop shop for graphic design, printing and bulk mailing needs. Services are available to faculty, staff, students and the OIT community.

Black and white, color, digital printing as well as laminating, comb binding and shredding are available at low costs. Electronic job submission provides the campus with access to services and completed jobs can be delivered to campus mail boxes within 24 hours.

Mail services include bulk mailing; mail merge; folding and inserting; and postcard mailings. Special requests will be addressed on an individual basis.

Hours of operation are 7 a.m. to 5 p.m. Monday through Friday during the academic terms. During college breaks, operational hours are 8 a.m. to 5 p.m.

Geo-Heat Center
Tonya L. Boyd, Senior Engineer
Andrew Chaisson, Program Manager
Boivin Hall, 102
(541) 885-1750
ggeoheat@oit.edu
http://geoheat.oit.edu

The Oregon Renewable Energy Center encompasses OIT's Geo-Heat Center. Established in 1975, Geo-Heat is active in research, technical assistance and information services in geothermal direct-use, small-scale power generation and ground-source heat pumps. Research activities have included hydrology and geochemistry studies, district heating, downhole heat exchangers, heat pumps, agri-business applications, low-
Information Technology Services

Andy Abbott, Chief Information Officer
Boivin Hall, 123
(541) 885-1720
(541) 885-1470 Helpdesk/Service
(503) 821-1289 Portland Helpdesk

Information Technology Services provides computing and telecommunications resources for the OIT campus. Primary service and support areas include e-mail and network storage for all students, faculty and staff; broadband network connectivity between all OIT buildings; and advanced technology services such as wired and wireless Internet connections, Internet 2 and interactive videoconferencing. In conjunction with OIT faculty, staff and students, ITS strives to offer the comprehensive and advanced technologies necessary to meet educational needs and to help facilitate instruction and research on the OIT campus.

OIT offers more than 500 computers available for student use on the Klamath Falls campus. The Portland Metro and West campuses have more than 100 computers for student use. ITS supports the computers and projects in campus laboratories and classrooms to insure proper function and availability for faculty and students.

Klamath Community Television

Learning Resource Center, 250
(541) 885-1801
Production Assistance
(541) 885-1799

The community television station is housed on the second floor of the Learning Resource Center. Funded by cable television franchise fees from Klamath County and the City of Klamath Falls, Klamath Community Television’s mission is to educate, inform and entertain. The station produces and cablecasts public, educational and governmental programs primarily for the residents of Klamath County, but for wider distribution as well.

Klamath Community Television strives to create local programming to promote Klamath County and the City of Klamath Falls. Some of this local programming has included: Reflections on a Dream: People of Archaeology on the Williamson River Delta just to name a few. In addition, the station also televises local city council, city planning and county commissioner meetings. In 2005, KCTV was awarded the Telly Award for its production of Mother Goose and Friends. The Telly Awards honor local, regional and cable television programming.

Library Services

Karen Kunz, Interim Library Director
Anne Hiller Clark, Instructional Services and Shaw Librarian
Dawn Lowe-Wincentsen, Portland Operations Librarian
Iris Godwin, Technical Services Librarian
Karen Kunz, Access Services and Systems Librarian
Kelly Peterson, Instructional Services Coordinator and Digital Projects Librarian
Alla Powers, Reference Services Coordinator
Jan Abeita, Access Services Manager

Library

Located in the LRC, the Library offers public computers, individual and group study spaces and a computer lab. The Library contains approximately 150,000 volumes, including government documents; access to more than 18,000 print and electronic journals; and unique digital collections relating to the Klamath River Watershed and Crater Lake National Park. Online catalogs provide access to the collections of the OIT Library, regional academic libraries and to library resources worldwide. The Library’s many Web-based databases offer students access to extensive information sources. All of the Library’s electronic resources are available campus-wide and via remote access to promote student learning regardless of location. Research services include print and electronic reserves, interlibrary loans, individual research assistance and chat reference. The librarians offer class-related instruction in the use of the Library and information resources, workshops on various topics, classes in research methods and tours. For librarian assistance, call (541) 885-1773.

OIT Portland

Library services are also available at the OIT Portland locations, which share access to all of the Main Library’s electronic resources. To reach the Portland Operations Librarian, call (503) 821-1258.
Shaw Historical Library
The Shaw Historical Library, established in 1983 by Laurence and Dorothy Shaw, houses collections of books, art, maps, manuscripts, photographic images and other materials pertaining to the history cultures and natural history of the Land of the Lakes—Southern Oregon, Northern California and Northwestern Nevada—from prehistory to the present. The Library’s activities and publications, including the *Journal of the Shaw Historical Library*, focus on all aspects of the history and natural history of the region. The Library is located on the second floor of the LRC. To reach the Shaw Librarian, call (541) 885-1686.

OIT Mail Center
College Union
541-885-1670

As a commercial mail outlet, the OIT Mail Center serves the campus community by offering mailing services and supplies, postal mail boxes and UPS shipping services. Mail Center hours are from 8 a.m. to 5 p.m. Monday through Friday. The Mail Center is located inside the Paper Owl Bookstore in the College Union.

Oregon Renewable Energy Center
Tom Chester, Director
Purvine Hall, 290
(541) 885-1883
tom.chester@oit.edu

The Oregon Renewable Energy Center was established by the Oregon State Legislature in 2001 to promote energy conservation and renewable energy use in Oregon and throughout the Northwest. This is accomplished through applied research, educational programs and practical information. The Center also encompasses OIT’s Geo-Heat Center. OREC draws its strong technical expertise from the OIT faculty, whose engineers and computer scientists have been involved in applied research in renewable energy for decades.

OREC:
- **Investigates** renewable energy technologies and opportunities for using them.
- **Assesses** which technologies are appropriate for particular circumstances.
- **Applies** promising technologies with effective instrumentation and controls.
- **Evaluates** technologies using testing and economic analysis.
- **Informs** the public through classes, educational materials and technical data.

Current OREC applied research and applications engineering projects focus on:
- **Power conversion and storage** – Testing renewable technologies such as solar, fuel cells and geothermal heat pumps and developing control systems to smoothly integrate renewable technologies into existing facilities and electrical distribution networks.
- **Alternative fuel sources** – Investigating options to gasoline and diesel for cars and trucks.
- **Green building technologies** – Utilizing green building materials and techniques, and instrumentation, control and testing of buildings that use renewable energy instead of conventional power.

Marketing and Communication
Gwen Raubolt, Director
Snell Hall
(541) 885-0938
gwendolyn.raubolt@oit.edu

The Marketing and Communication Department at Oregon Institute of Technology is responsible for developing and implementing integrated marketing and communication strategies designed to advance the university’s image and standing among wide-ranging target audiences. This includes building and protecting the University’s brand position and identity, providing consulting on marketing efforts undertaken by departments and programs, managing university-wide publications, the university website, as well as other internal and external communication processes.

The Marketing and Communication Department is a creative team of writers, graphic designers, photographers, and web developers. Fusing together these talents, the department develops an effective and unique marketing approach to meet the needs of the University.

Renewable Energy Engineering Degree Program
The Renewable Energy Engineering undergraduate degree program offered by OIT is the only one of its kind in the United States. In addition to the REE courses, the general OIT curriculum includes classes and laboratories in renewable energy and sustainability that are available to students in other disciplines. The REE degree is delivered on OIT’s Portland and Klamath Falls campuses.
Small Business Development Center

Jamie Albert, Director and Counselor
Boivin Hall, 119
(541) 885-1760
dsbdc@oit.edu

Established in 1984, the Small Business Development Center provides free, confidential advice to businesses in Klamath and Lake Counties. Areas of emphasis include start-ups, existing concerns, expansion and operations improvement.

Business counseling is done by the Center’s director and by OIT faculty, who are hired by the director to meet a client’s specific needs. In addition to consultation services, the Center co-sponsors workshops in the local business community. Most workshops are offered at a nominal fee.

The Small Business Development Center is funded through the federal Small Business Administration, state lottery funds, OIT and Klamath Community College. Approximately 200 businesses use the Center each year.

Student Affairs

Erin M. Foley, Vice President for Student Affairs, Dean of Students

College Union 217
(541) 885-1010
www.oit.edu/student-services

An integrated program of support services and supervision of student life is offered by the Office of Student Affairs. These programs and services include: Admissions and Career Services, the Center for Learning and Teaching (CFLAT), Disability Services, Financial Aid, Housing and Residence Life, Integrated Student Health Center, Tech Opportunities Program (TOP) and Campus Life and Student Government (ASOIT).

The Vice President for Student Affairs and her staff maintain close relationships with students and student organizations and are available for consultation and collaboration on all matters pertaining to student well-being.

Center for Learning and Teaching (CFLAT)

Angela Aguiar, Director
Angela Archer, CFLAT Coordinator
Grace Rusth, CFLAT Specialist
Erin Floyd, CFLAT Specialist

Learning Resources Center, 229-233
(541) 885-1791
www.oit.edu/cflat

CFLAT, the Center for Learning and Teaching, is a multi-purpose department designed to enrich learning, teaching and student success at OIT. CFLAT helps students succeed by providing effective academic assistance, support and resources through promotion of student learning, personal growth and programs designed to enhance instruction, advising, involvement, satisfaction, achievement, retention, persistence, graduation and post-graduate success. CFLAT provides peer tutoring for matriculated OIT students, academic success (ACAD) classes, accommodations for students with disabilities, test proctoring, a computer laboratory, the campus writing center, as well as many other services to support students, staff and faculty in an effort to facilitate student success at OIT. In addition, CFLAT coordinates new student registration (ROAD) for the Klamath Falls campus and assists with faculty orientation, support and development efforts, including September Institute and Advisor Training for new faculty. It provides ongoing support for faculty to help improve teaching effectiveness and instructional abilities as well as student support skills.

CFLAT functions as the University Testing Center. OIT testing, distance testing, placement testing, test proctoring and other standardized testing programs are also offered.

CFLAT is an integral part of OIT’s student success initiatives and strives to provide effective programs and services to create a welcoming, supportive and successful campus. Visit www.oit.edu/cflat or contact CFLAT at (541) 885-1791 or cflat@oit.edu for more information.

Housing and Residence Life

Mandi Clark, Director of Housing and Residence Life
Andi Ehlers, Administrative Coordinator

Housing Office Residence Hall, A 151
(541) 885-1094
housing@oit.edu
www.oit.edu/housing

Housing and Residence Life encourages self-responsibility, a necessary ingredient for the accomplishment of academic, social and personal objectives. Accordingly, every attempt is made to provide the environment to accomplish this aim. Studies have indicated that much of the knowledge required for success in life is gained outside the classroom. OIT’s Housing and Residence Life program provides a vital aspect of a student’s educational experience. Emphasis is on providing accommodations that are attractive, safe, reasonably priced and that offer stimulating programs that satisfy individual needs for privacy, community life, diversity in living arrangements and educational growth. In the Housing Office, students can make arrangements for room and board, receive assistance with personal matters, consult with the program staff, make suggestions for improvements, work out financial details and receive assistance for a variety of related housing concerns and interests.

Residence facilities at OIT are operated on a self-supported financial basis and house up to 650 male and female students. Living in college housing relieves the student of many time-consuming and expensive tasks, including driving to and from campus. With this extra time and financial savings, students are better able to devote more energy to their
studies, to independent and non-academic learning experiences, to recreational and stress-relieving pursuits and to making new and often lifelong friends.

Information about on-campus housing is sent to all students admitted to OIT. Students living on campus for the first time must sign up for the meal plan. If you need a housing or meal plan application, please contact the Housing and Residence Life Office.

Applications for on-campus housing should be completed and returned as soon as possible to the Housing and Residence Life Office. Space is guaranteed to new students who apply before May 1.

Room-and-Board Rates
Room-and-board rates at OIT are approved by the Oregon State Board of Higher Education and are announced publicly after approval. Current rate information and any other information concerning Housing and Campus Dining operations can be obtained from the Housing and Residence Life Office, OIT, 3201 Campus Dr., Klamath Falls, OR 97601-8801, or online at: www.oit.edu/housing.

Integrated Student Health Center (ISHC)
Alden B. Glidden, M.D., Medical Director
James W. Pittman, Administrative Director

Integrated Student Health Center
(541) 885-1800
(541) 885-1866 fax
health@oit.edu

The Integrated Student Health Center, located at the main campus in Klamath Falls, provides general medical care for illnesses and accidents, medical referral, counseling and wellness programs. Students taking six or more credit hours are entitled to and encouraged to use the Integrated Student Health Center. Other students can use the Integrated Student Health Center by paying the health fee.

Health Requirements to Register
The following health requirements must be fulfilled before registration. Documentation of requirements must be submitted to the OIT Integrated Student Health Center. Failure to complete these requirements will result in a “hold” on the student’s account, affecting a student’s ability to conduct Business Office transactions and to register for courses.

1. A completed Health History form. This form is mailed to all students when they confirm registration.
2. Evidence of adequate immunizations (e.g., official immunization record, signed statement by a physician, immunizations on official high school transcript, etc.):
 - Two doses of measles/mumps/rubella vaccine (MMR) are required for all full-time college students born on or after Jan. 1, 1957. The first dose must be given after the first birthday. The second dose must be after 1989.*
 - Recent tetanus (Adacel), hepatitis A/B, polio, varicella (chickenpox), and meningococcal vaccines are strongly recommended. The Integrated Student Health Center carries most of these vaccines.*

 * This requirement is support by:
 - Oregon Revised Statute 433.282
 - Oregon Administrative Rule 333-050-0130
 - Center for Disease Control and the Advisory Committee on Immunization Practices (MMWR Weekly June 9, 2006 / 55(22):629-630
 - American College Health Association Guidelines, Recommendations for Institutional Prematriculation
 - Immunizations, January 2009.

Services

Medical Clinic
OIT’s Integrated Student Health Center health care providers are committed to providing high quality, personalized care. The medical clinic is staffed by a physician, nurse practitioner, registered nurse and office assistants. Diagnosis and treatment of acute and chronic illnesses, birth control and emergency contraception, routine laboratory procedures, immunizations, pharmacy, minor surgery and care of minor injuries are some of the services provided. Major emergencies are referred to Sky Lakes Medical Center adjacent to the Klamath Falls campus. Referrals are made to specialists as needed. Visits are free with a low cost for medications, laboratory work and some treatments.

Counseling Services
Counselors are available to discuss personal, academic and career concerns. Crisis services are available and referrals are made to community resources if needed. Sessions are confidential and are provided free of charge to students enrolled for six or more credits. Students enrolled for five or fewer credits can receive one free assessment session, and then may access additional services by paying the Student Health fee.

Personal counseling focuses on concerns such as self-esteem, relationship issues, academic performance, family difficulties and troubled sleep. Some specific issues dealt with are: depression; anxiety; substance abuse, suicide, conflicts with parents, spouses or children; loneliness; dating problems; study skills; coping with past or present abusive situations; and grief.

Wellness Programs
A Health Educator is on staff to assist students in staying healthy and fit while attending OIT. Free individual appointments are available for personalized health and fitness programs, BMI testing, nutrition education and smoking cessation. Awareness events and health promotion programs are also provided on a regular basis campus-wide. Please call the Integrated Student Health Center to make an appointment or learn more about various campus-wide wellness activities.

Student Health Advisory Committee (SHAC)
SHAC serves as an advisory committee to the ISHC. Students provide input on programs and services provided, generate new ideas and participate in wellness and promotion events. All students are welcome to apply to join this committee. SHAC meets on a monthly basis during the academic school year. Call or visit the Integrated Student Health Center to apply.
Peer Health Educator Program
The OIT Peer Health Education Leadership program gives students the opportunity to develop public speaking, leadership, and public health skills while providing a resource for health information to the OIT community. The mission of the program is “Helping people make informed, voluntary, health-promoting behavior changes.” Student volunteers are called Peer Health Educators (PHEs), who work with peers through education and outreach. They receive training to gain facilitation skills, public speaking experience and knowledge about college health issues. Students in good academic standing and with sophomore status or above may apply during Winter Term. Opportunities for others to volunteer and assist PHEs are available throughout the year. For more information, visit www.oit.edu/health/peerhealthed.

Fees/Charges
Students taking six or more credit hours pay a Student Health fee. This fee entitles students to services offered by the medical clinic, counseling and wellness programs. Other students can use the center if they pay the health fee. Office visits are free for illness and injury, evaluation, treatment, questions and other reasons. Additional charges may be necessary for medications, treatments, supplies, immunizations and laboratory tests. Student health insurance is billed on your behalf by the Integrated Student Health Center. No cash is necessary at the time of visit. All medical expenses rendered outside the Integrated Student Health Center from private physicians or hospitals are the student's financial responsibility.

Student Health Insurance Plan (SHIP)
OIT requires basic insurance coverage that is automatically provided for all students enrolled in six or more on campus credit hours during fall, winter and spring Terms. Health insurance is also available during the summer, if requirements are met. The Integrated Student Health Center manages the student insurance program, which is designed to assist with medical expenses for minor injuries and illnesses. A brochure explaining the automatic enrollment fee, benefit schedule and claims procedure is available at the ISHC. Visit www.oit.edu/health for more information.

A more comprehensive Supplemental Major Health Insurance plan is also available, which provides additional coverage and major medical benefits for students and their eligible dependents. Students must also enroll in the basic insurance in order to apply for the extended insurance.

International students and students in certain programs are automatically enrolled in the Supplemental Major Health Insurance plan. A waiver is possible for students in certain health sciences programs only. (Please check with your program of study or the Integrated Student Health Center for more information.) The waiver must be completed within the first 30 days of a term before a refund can be given. Once completed, the waiver will cover the entire academic year.

Tech Opportunities Program
Joan Loustalot, Director
Crystal Murphy, Program Specialist
Laura Reid, Academic Specialist

Learning Resources Center, 228
Phone (541) 885-1125
TOP@oit.edu
www.oit.edu/TOP

The Tech Opportunities Program (TOP) is a federally funded (Student Support Services TRIO) academic support program designed to assist highly motivated students who are also low income, first generation or students with disabilities. TOP staff work closely with participating students to comprehensively assess academic and financial needs and to develop personalized plans for college success. Participants may be eligible for a variety of academic support services, including group and/or individual tutoring and related support; mentoring; networking with other students; college-success workshops and classes; additional academic advising; and limited financial assistance.

Campus Life
Jane Rider, Director
(541) 885-1389
Deanne Pandozzi, International and Diversity Coordinator, (541) 885-1847
Chris Frazier, Student Activities and Leadership Coordinator (541) 885-1392

College Union, Room 108
(541) 885-1825

The Campus Life mission supports OIT’s mission as well as that of Student Affairs. We are committed to helping students develop skills in critical thinking, communication, teamwork, citizenship, community service, diversity awareness and lifelong, independent learning. These skills are developed as students work in teams in out-of-class learning experiences.

Hootie’s Halloow (New Student Orientation)
New Student Orientation (NSO) is coordinated through Campus Life by a student team. This program is designed to give students a chance to meet and also socialize with professors before classes begin. NSO also provides activities, workshops, barbecues, dances and a variety of other events and information to incoming students. An Orientation packet is provided to students when they first arrive. This includes a schedule of events and activities occurring the weekend prior to the start of classes in the fall when Orientation is held. International students participate in a special International orientation with various activities during the first weeks of the term; they also meet individually with the SEVIS Coordinator and receive special welcome packets specifically designed for incoming international students. Many other campus clubs, organizations and programs volunteer their time to assist with New Student Orientation. If you would like to get involved as either a volunteer or a student staff member, contact Campus Life at (541) 885-1392 or www.oit.edu/orientation.
ASOIT

The Associated Students of Oregon Institute of Technology (ASOIT) invites the participation and involvement of all students in the governance process. Student involvement has been shown to correlate with academic and career success. Programs and activities are aimed at fostering a sense of community at OIT. A sense of connection and community has also been shown to correlate with student success. As a student, you can be involved in a variety of ways. You could start or join a campus club or organization, serve on a committee, run for office or apply for various student staff positions.

Student Senate

The ASOIT officers currently comprise the Student Senate. The Senate represents all students of OIT and serves to communicate and advocate with all members of the university community. ASOIT officers are charged with adequately representing and interpreting student opinion related to campus policy and procedures, while promoting unity and community among the students of the university community. The Senate encourages the development of campus clubs and organizations. They also sponsor activities and events that foster educational, cultural, social, and recreational opportunities for students. Officers are elected each year during spring quarter and serve a one year term.

Students can participate by getting involved with a club or organization or by serving on a university committee or commission. The Student Senate holds a general meeting for campus clubs and organizations at 5:30 p.m. on the first Monday of each month during the regular school year. For further information on any of these options, visit the ASOIT web page at www.oit.edu/asoit. You may also contact the Campus Life Department or ASOIT at (541) 885-1826 or the ASOIT President at (541) 885-1828.

Organizations and Campus Clubs (OCC)

Student clubs and organizations add another important dimension to life on campus. ASOIT usually funds 45-50 student organizations and clubs each year. Joining an organization is a great way to meet new people and pursue common interests in a relaxed setting. Almost half of the clubs are related to various academic disciplines and provide opportunities for students to meet, study, take part in professional development opportunities such as conferences and competitions related to their majors. Clubs and organizations also work together to support service learning by participating in a variety community service projects at home and abroad. Clubs are also linked to special interests, sports, recreation, culture, spiritual and social activities.

Campus Activities

The purpose of Campus Activities is to provide quality activities for all students, taking into consideration their expressed wishes, interests, and needs. Campus Activities (CA) funds quality social, cultural, arts and recreational programs for all OIT students. Funding is solely based on incidental fees and admission costs to programs are either low or free to OIT students. A broad array of events have been offered to students including bands, comedians, student talent shows, lectures, discount bowling and movie nights, and homecoming week. The CA student staff is selected during Winter Term each year. To get involved or to apply for a position, contact the Campus Life Department at (541) 885-1392 or visit the CA Web page: www.oit.edu/campusactivities.

Diversity Center (DC)

OIT’s Diversity Center is a place to gather and build relationships within a creative and educational environment as well as provide academic, cultural and social support to all OIT students, faculty and staff. The DC is committed to fostering and sustaining an inclusive environment that empowers all members of the campus community.

The DC mission is four-fold. First, to create a campus climate that builds trust and provides opportunities for enhancing diversity and a sense of community. Second, to foster an inviting learning environment for all who bring a variety of human characteristics, backgrounds, interests and points of views that serve to enrich the OIT community. Third, to facilitate, build and create interaction, understanding and dialogue. And finally, to be a diverse learning community of culturally conscious individuals that values and celebrates different perspectives and seeks to create an environment that fosters an understanding of cultural and human diversity.

Greek Life Fraternities/Sororities

The Greeks are a long-standing presence on the OIT campus. Phi Delta Theta is a national fraternity and Alpha Sigma Alpha is a national sorority. Alpha Iota Mu is a new club that has just formed with interest in being a local sorority. Greek life at OIT is dedicated to community service, high academic standards and enriching the sense of community on campus.

A current roster of organizations is available from ASOIT or Campus Life. Super Club Sign-Up is an annual event at the start of the Fall Quarter, as well as at key times during the academic year. OCC Representatives are an integral part of the Student Senate and all representatives attend the general meeting held at 5:30 p.m. on the first Monday of each month during the regular school year. For details on starting a club or organization or for information about clubs, organizations, honor societies or Greek life, visit the ASOIT web page at www.oit.edu/asoit or contact the ASOIT office at (541) 885-1826.
Multicultural and International Student Services

Multicultural and International Student Services are available through the Campus Life Department. Our department promotes policies, programs, and activities that contribute to a broader understanding of people and their cultures. We serve as a resource for minority and international students as well as cultural clubs and organizations. In addition to our Diversity Center, we provide programs and opportunities for students to gather, study, socialize, and plan activities. Assistance is available for questions related to international study; this includes providing assistance to students with regard to SEVIS regulations, student visas, as well as personal, academic, and social adjustment.

We also facilitate the Leadership and Diversity Scholarship Program and we provide assistance and outreach for a number of community cultural programs and events. In addition, advisement is provided to a variety of diverse clubs, including the International Student Club, Native American Student Union, GSA, M.E.C.h.A., and others. The International Club each year implements the popular international dinner and other events. Clubs have worked together with the Diversity Center to help sponsor Asian New Year celebrations, Cinco de Mayo celebrations, film festivals and Diversity Week events. NASU has provided a variety of Native American awareness speakers, drumming and dancing events as well as POW WOW’s on campus. More information can be obtained by contacting Campus Life at 541-885-1826 or the Diversity Center at 541-885-1369.

Family Weekend

Oregon Institute of Technology has traditionally held Family Weekend in May. This event gives families the opportunity to experience their student’s university life and a snapshot of our community. Activities and events include in-depth campus tours, a student talent show, senior project symposium, and club displays and demonstrations. Each year we also partner with the community to provide discounts at local businesses and hotels, as well as tours of Klamath Falls.

Summer Activities

In an effort to increase the number and scope of activities offered to students who decide to take summer classes, a Summer Activities program was recently created. Historically, events have included everything from rental of outdoor equipment, all campus BBQ’s, bowling nights and even an outdoor movie. More recently OIT has hosted the OIT Summer Music Series. The series encourages community members, families and students to join together at the OIT Fountain for a free sizzling summer music series! Live music is performed by seven different bands as well as local vocal talent during the Klamath Idol Contest. Musical genres are often broad and include a wide variety of music to appeal to our diverse campus and community audience.

Outdoor Program (OP)

The Outdoor Program (OP) provides an opportunity to participate in various outdoor activities planned for student enjoyment, including, but not limited to, rafting, caving, mountain-climbing, hiking, biking, snowboarding, mountain biking, camping, and skiing. Most trips are offered at little or no cost. No previous experience is necessary to enjoy the events the OP offers, since the activities are planned for beginners and advanced adventurers alike.

In addition to sponsoring trips, the OP also offers low-cost rentals of equipment for a variety of outdoor activities. If you are planning a weekend expedition and don’t have the money to buy expensive equipment, the OP rents canoes, tents, backpacks, cross-country skis, snowboards, and more at a nominal cost. The Outdoor Program office is located on the second floor of the College Union. For further information, contact the Athletics Department.

Student Media

KTEC Radio Station
89.5 MHz FM

KTEC is the campus radio station licensed to the Oregon State Board of Higher Education by the Federal Communications Commission and is the oldest FM station in Southern Oregon. KTEC is operated by student staff and volunteers and programmed to serve the interests of the OIT student body and the Klamath Falls community. Throughout the school year, KTEC provides a varied program schedule of music, educational material and special events. Any student interested in radio broadcasting is encouraged to join KTEC. As KTEC staff members, students will practice and perfect their knowledge by producing both live and pre-programmed broadcasts. KTEC’s studio is located in the southeast corner of the College Union.
Oregon Technical Broadcasting (OTB)

OTB is the student-run video production program at OIT. OTB films campus events, operates the closed-circuit TV station on campus and provides video service to campus organizations that request them. Anyone interested in TV/video/film productions and acting is encouraged to get involved with OTB. No previous experience is necessary.

The EDGE

OIT’s student newspaper, The Edge, is a weekly publication written by students from all majors and produced by a student staff. Published fall, winter and spring terms it is distributed without charge to students. Academic credit is also available by enrolling in journalism courses offered through the Communication Department.

Women’s Resource Center

The OIT Women’s Resource Center (WRC) provides resource and referral information; facilitates programming and interpersonal support; and promotes academic and personal success. Our goal is to promote and maintain a positive and supportive climate at OIT. Everyone needs hope and encouragement to succeed. The WRC is here to help women on their journey and offer positive influences that will transform them into future leaders. Honoring the complexities of women’s identities, the WRC facilitates choices and change through programs, counseling, and workshops, and serves as the central resource for educational and support services for women.

The WRC welcomes anyone and any topic. We offer referrals and supportive contacts on campus and in the community should students need help or support. The WRC is a nonjudgmental area and offers a safe space to students, faculty, and staff. We offer a student lounge space for meetings, conversation, study, and events. Student staff members are friendly and are here to help our OIT students succeed. For more information visit the WRC upstairs in the College Union Program Suite or contact the WRC student staff at 541-885-1067.

Student Leadership

Each of the student programs highlighted above employ student staff teams who plan and coordinate events and activities. This gives students a valuable opportunity to learn hands-on leadership skills in a variety of out-of-class paraprofessional settings. Often students are also given the opportunity to collaborate with academic professionals as well as other student leaders. Each program mission is created by the student teams, encouraging active and thoughtful teamwork. Students also participate in various training seminars throughout the year to aid in the enhancement of their leadership skills. Teamwork, time management, collaboration, communication and critical thinking are all skills we try to build in our student leaders. For more information on student leadership programs or staff opportunities contact the Campus Life Department at 541-885-1826.

New Student Orientation (NSO)

New Student Orientation (NSO) is coordinated through Campus Life by a student team. This program is designed to give students a chance to meet and also socialize with professors before classes begin. NSO also provides activities, workshops, barbecues, dances and a variety of other events and information to incoming students. An Orientation packet is provided to students when they first arrive. This includes a schedule of events and activities occurring the weekend prior to the start of classes in the fall when Orientation is held. International students participate in a special International orientation with various activities during the first weeks of the term; they also meet individually with the SEVIS Coordinator and receive special welcome packets specifically designed for incoming international students. Many other campus clubs, organizations and programs volunteer their time to assist with New Student Orientation. If you would like to get involved as either a volunteer or a student staff member, contact Campus Life at (541) 885-1392 or www.oit.edu/orientation.

Student Leadership

Each of the student programs highlighted above employ student staff teams who plan and coordinate events and activities. This gives students a valuable opportunity to learn hands-on leadership skills in a variety of out-of-class paraprofessional settings. Often students are also given the opportunity to collaborate with academic professionals as well as other student leaders. Each program mission is created by the student teams, encouraging active and thoughtful teamwork. Students also participate in various training seminars throughout the year to aid in the enhancement of their leadership skills. Teamwork, time management, collaboration, communication and critical thinking are all skills we try to build in our student leaders. For more information on student leadership programs or staff opportunities contact the Campus Life Department at 541-885-1826.

University Development

Robin Thompson, Interim Vice President for Development and Alumni Relations

(541) 885-1130

University Development builds and enhances positive relationships with students, faculty, staff, alumni and friends of the university through initiatives and activities that embody institutional values and position Oregon Institute of Technology among the nation’s leading technological and health professions universities. Fundraising, alumni relations, grant writing and other activities stimulate and convey the distinctive role and contributions of OIT throughout Oregon, the nation and internationally.
Alumni Relations and The Oregon Tech Alumni Association

Robin Thompson, Interim Vice President for Development and Alumni Relations

Snell Hall, 212
(541) 885-1132
robin.thompson@oit.edu
https://alumni.oit.edu

The Alumni Relations office promotes interactions and loyalty of alumni and currently enrolled students toward Oregon Institute of Technology. Services and activities include regional social events, student activities, reunions and continuing education programs. Alumni have the opportunity to keep in touch with other alumni through the university’s alumni Web page and other means of communications regarding their academic major and OIT.

The Oregon Tech Alumni Association, established in 1949, is guided by the Alumni Advisory Board and exists to support and promote Oregon Tech as a premier learning institution and to provide a structure for alumni affiliation. Membership is free and automatic to anyone who has completed at least 90 credits at OIT. Areas of special interest for the Alumni Association include assisting the university with new-student recruitment activities, career networking, social and educational activities and the financial support of Oregon Tech. The Alumni Association is an affiliated organization of the Oregon Tech Foundation.

The Oregon Tech Foundation

Robin Thompson, Interim Executive Director

(541) 885-1130

The Oregon Tech Foundation is a nonprofit organization that provides private financial support for Oregon Institute of Technology. The Foundation is governed by a Board of Directors that represents a broad range of community leaders, alumni and private benefactors. The Foundation raises funds to enhance academic programs, to support scholarships and to enrich student life. A related responsibility of the Oregon Tech Foundation is the management of private funds entrusted to it. These funds currently total above $16 million, a large part of which is committed to the support of numerous scholarships that are awarded primarily on the basis of academic achievement and financial need. The Foundation works closely with its affiliated and associated organizations, including the Oregon Tech Alumni Association, the Shaw Historical Library and the Oregon Tech Athletic Boosters.

Veterans Services

Kristin Sayles, Veteran’s Certifying Official/Coordinator

Snell Hall, Registrar’s Office, lower level
(541) 885-1307
kristin.sayles@oit.edu

The Veterans Certifying Official/Coordinator works with the Veterans Administration to deliver educational benefits to a variety of veterans, selected reservists, dependents and survivors. All students, including new, transfer or returning, who expect to receive VA benefits must notify the coordinator in order to start the process of certification.

The coordinator also administers the satisfactory progress standards for students who are receiving VA educational benefits. See Veterans Satisfactory Progress Standards under the Academic Policies section of this catalog.

More information is available at www.oit.edu/veterans.
Governance
Oregon
University System

The Oregon University System includes seven institutions that provide general, professional and technical educational opportunities throughout the state.

Member institutions are Eastern Oregon University, La Grande; Western Oregon University, Monmouth; Oregon Institute of Technology, Klamath Falls; Oregon State University, Corvallis; Portland State University, Portland; Southern Oregon University, Ashland; and the University of Oregon, Eugene.

The system is governed by the Oregon State Board of Higher Education, whose members are appointed by the Governor and approved by the Senate. The Board maintains a permanent staff, headed by the Chancellor of the Oregon University System, who is appointed by the Board.

Oregon State Board of Higher Education

Members and term expiration dates:

Paul Kelly, Jr., President, Portland, 2011
James L. Francesconi, Vice President, Portland, 2012
Lynda M. Ciuffetti, Corvallis, 2012
Matthew (Matt) W. Donegan, Portland, 2013
Jill W. Eiland, Hillsboro, 2013
Hannah Fisher, Portland, 2011
Allyn Ford, Roseburg, 2013
Brian Fox, Ashland, 2011
Rosemary Powers, La Grande, 2011
Preston Pulliams, Portland, 2012
Kirk E. Schueler, Bend, 2013
David (Dave) V. Yaden, Lake Oswego, 2012

George Pernsteiner, Chancellor

Directories

President’s Advisory Council

Mark Bansemer, Executive Director, Firmware Engineering, International Game Technology, 2010
William Buckley, Attorney at Law, Buckley LeChevallier P.C., 2014
Bill Castle, President and CEO, South Valley Bank & Trust, 2012
Michael Conboy, Senior Applications Specialist, Toshiba America Medical Systems, Inc., 2014
Mary Coucher, Vice President, Alliances and Business Development, IBM Corp., 2010
James DeHoog, General Manager, Environmental Technical Services, Inc., 2014
Lisa Graham, Vice President and COO, Bend Research, Inc., 2014
Mike Hallgrimson, Program Management, Boeing, Portland, 2012
Denise Honzel, Healthcare Consultant, 2012
Gary Johnston, President, 7L Investments LLC, 2012
Steven Mays, President, Electronic Wood Systems, Int., 2010
Martha Schrader, Former State Senator, District 20, State of Oregon, 2014
Patricia Smullin, President, California-Oregon Broadcasting, Inc., 2010
Paul Stewart, President and CEO, Sky Lakes Medical Center, 2011
Oregon Tech Foundation
Board of Directors

Andrew E. Peterson, President
Lance J. Bishop, Vice President
Greg Bulkley, Treasurer
Kristi L. Redd, Secretary

Mark Bansemer
Don A. Boyd
Russ Carter
Gerald Freschi
Gerda V. Hyde
Gary Johnston
Douglas Kintzinger
Ronald Loveness
Anne Ludlow
Richard Siemens
Lois Stilwell
Theodore E. Thom
Diedra Thompson
Jon Wayland
Heidi Wright

Ex-Officio

Christopher G. Maples, OIT President
Mary Ann Zemke, OIT Vice President for Finance and Administration
James DeHoog, OIT Alumni Advisory Board President
Robin Thompson, OIT Interim Vice President for Development and Alumni Relations; and Interim Executive Director, The Oregon Tech Foundation
Mike Moore, OIT Athletic Boosters
Lee Juillerat, President, Shaw Historical Library

Emeritus Directors

Timothy Bailey
Marge Bocchi
R. Sherrill Boyd
Dave Cowan
Alan Cragmiles
William Early
Trudy Farr
Fred Foulon
John Gerbert
Winifred Hood
Susan Laubengayer
Earle M. LeVernois, M.D.
James McCobb
John Novak
Jean Pinninger
Joan Staunton
Nancy Wendt

Oregon Institute of Technology
Administrative Offices

President, Christopher G. Maples
Provost and Vice President for Academic Affairs, Bradley Burda
Vice President for Finance and Administration, Mary Ann Zemke
Vice President for Student Affairs and Dean of Students, Erin Foley
Interim Vice President for Development and Alumni Relations, Robin Thompson
Associate Vice President for Strategic Partnerships, Dolores “Lita” Colligan
Chief Information Officer, Andy Abbott
Dean, College of Engineering, Technology, and Management, Charlie Jones
Dean, College of Health, Arts and Sciences, Lawrence Powers

Academic Agreements, Marla Edge, Director
Admissions, Ginny Gardiner, Director
Athletics, Mike Schell, Director
Business Affairs, Sara Reuter, Director
Campus Life, Jane Rider, Director
Campus Security, Ed Daniels, Director
Career Services, Joan Loustalet, Director
College Union and Campus Dining, Christopher Dalla, Director
Disability Services, Joan Loustalet, Director
Distance Education, Barb DeKalb, Director

Facilities Services, David Ebsen, Director
Financial Aid, Tracey Lehman, Director
Housing and Residence Life, Mandi Clark, Director
Human Resources and Affirmative Action, Ron McCutcheon, Director
Information Technology Services, Andy Abbott, Chief Information Officer
Institutional Research, Vacant, Director
Integrated Student Health Center, James Pittman, Administrative Director
Learning and Teaching, Center for, Angela Aguia, Director
Library, Karen Kunz, Interim Director
Marketing and Communication, Gwen Raubolt, Director
OIT–Seattle at Boeing, Vacant, Director
Oregon Renewable Energy Center, Tom Chester, Director
Paper Owl Bookstore, Lane Hickman, Director
Portland Operations, Richard Swanson, Director of Facilities and Contracts
Registrar’s Office, Wendy Pedersen, University Registrar
Small Business Development Center, Jamie Albert, Director
Tech Opportunities Program, Joan Loustalet, Director
Administration

Diana Angeli (2006), Executive Secretary to Vice President for Finance and Administration.

Angela Archer (2010), Coordinator, Center for Learning and Teaching. B.S. (2009), Oregon Institute of Technology.

Sandia Hanan (2008), Human Resources Coordinator, Human Resources. A.A. (1999), Oregon Institute of Technology.

Stephanie Hanson (2010), Coordinator, Youth Programs. A.A. (2000), Oregon Institute of Technology.

Grant “Lane” Hickman (1997), Manager, Paper Owl Bookstore. B.S. (1992), University of Utah.

Lisa Hughes-Dykstra (2010), Executive Assistant to Vice President for Development and Alumni Relations.

Mandi Clark (2004), Director, Housing and Residence Life. B.A. (1997), Kansas State University; M.S. (1999), University of Nebraska.

Dolores “Lita” Colligan (2007), Associate Vice President for Strategic Partnerships. B.A. (1975), University of California, Santa Cruz.

Christopher Dalla (1989), Director, Campus Dining and College Union. B.S. (1972), Cornell University; M.S. (1987), University of Pennsylvania, Philadelphia.

Marla Edge (1983), Assistant Professor; Director, Academic Agreements. B.S. (1976), M.Ed. (1989), Oregon State University.

Andrea “Andi” Ehlers (2008), Administrative Coordinator, Housing and Residence Life.

Erin Floyd (2010), Success Specialist. B.S. (2008), Corban College.

Michael Garrard (2007), Coordinator, Sports Marketing/Promotion.

Alden Glidden (1978), Associate Professor, Medical Director, Student Health Center. B.S. (1965), University of Michigan, Ann Arbor; M.D. (1969), Wayne State University.

Stephanie Hanson (2010), Coordinator, Youth Programs. A.A. (2000), Oregon Institute of Technology.

Grant “Lane” Hickman (1997), Manager, Paper Owl Bookstore. B.S. (1992), University of Utah.

Lisa Hughes-Dykstra (2010), Executive Assistant to Vice President for Development and Alumni Relations.

Sandra King (1990), Payroll Supervisor, Business Office.

Anne Malinowski (1990), Office Manager, Portland Operations.

Russell McMahon (2003), Director, Athletic Development. B.A. (1973), Kansas Wesleyan University.

Cheryl Meyers (1989), Executive Secretary, Academic Affairs.

Joel Moore (2010), Admissions Counselor. B.A. (2009), George Fox University.

Bryan Mueller (2005), Men’s and Women’s Soccer Coach.

Deanne Pandozzi (2002), Coordinator, Campus Life and SEVIS.

Adria Paschal (2007), Executive Assistant to the President.

Wendy Pedersen (1999), University Registrar. B.S. (1997), Oregon State University; M.S. (2005), Southern Oregon University.

Laura Reid (2007), Academic Specialist, Tech Opportunities Program. B.S. (2005), Oregon Institute of Technology.

Tracy Ricketts (2010), Manager, Donor and Alumni Relations. B.S. (1999), University of Oregon.

Greg Stewart (2004), Head Women’s Softball Coach. B.S. (1992), Sterling College.

Robin Thompson (2008), Interim Vice President for Development and Alumni Relations. B.S. (1980), West Virginia University; M.S. (1993), University of Utah.

Manuel Williams (2010), Manager, PACS.

Mary Ann Zemke (2008), Vice President for Finance and Administration. A.S. (1975), Lake Michigan College; B.A. (1977), Western Michigan University; M.B.A. (1990), Western Michigan University.
Instructional Faculty

This listing reflects faculty for the 2010-2011 academic year. In some cases, changes taking effect for 2011-2012 are included in the faculty lists under the department descriptions.

Valerie M. Ball (2008), Assistant Professor, Communication. B.A. (1973), University of Oregon; M.A. (1981), University of Colorado; M.S. (2003), Portland State University.

Bruce Barnes (2009), Assistant Professor, Electrical Engineering and Renewable Energy. B.S.E.E. (1978), and M.S.E.E., University of Illinois at Urbana; Ph.D. (2005), University of Idaho.

Raymond "Jay" A. Bockelman (2003), Professor, Computer Systems Engineering Technology. B.S. (1982), Portland State University; M.S. (1992), University of Oregon.

Barry Canaday (2009), Assistant Professor, Medical Imaging Technology. B.S. (1968), Oregon State University; M.S. (1973), Western Washington University; A.A.S. (1978), Peninsula College; A.A.S. (1992), Spokane Community College.

Ralph A. Carestia (1990), Professor, Computer Systems Engineering Technology. B.S. (1974), University of Southern Colorado, Pueblo; M.S. (1980), San Jose State University.

Christopher L. Caster (1999), Associate Professor, Medical Imaging Technology. A.A. (1975), Oregon Institute of Technology; B.S. (1979), Eugene Bible College; B.S. (1996), Oregon Institute of Technology; M.Ed. (2002), University of Phoenix.

Burton D. Clark (1998), Professor, Natural Sciences. B.S. (1979), University of Massachusetts, Amherst; Ph.D. (1986), The Ohio State University.

Mark H. Clark (1996), Professor, Humanities and Social Sciences, B.S. (1984), Rice University; M.A. (1987), University of Houston; Ph.D. (1992), University of Delaware.

David Clements (2010), Associate Professor, Electrical Engineering and Renewable Energy. B.S. (1966), Oklahoma State University; M.S. (1968), University of Illinois, Ph.D. (1973), University of Oklahoma.

Cristina Crespo-Veiga (2009), Assistant Professor, Dental Hygiene. A.S. (1997), Oregon Health & Science University; B.S. (2002), Portland State University; M.S. (2007), Portland State University.

Kate P. Darling (2001), Instructor, Allied Health Partnerships, Paramedic Education. A.A.S. (1997), Oregon Health & Science University; B.A. (1976), College of the Atlantic.

Don DaSaro (2010), Assistant Professor, Management. B.S. (1967), University of Missouri, M.B.A. (1991), Marymount University.

Heidi Denton (2008), Instructor, Dental Hygiene, ODS College of Dental Sciences. B.S. (1999), Oregon Health & Science University.

Eric Egalite (2010), Assistant Professor, Computer Systems Engineering Technology. B.S. (1999), Oregon Institute of Technology; M.S. (2008), California State University.

Marian S. Ewell (2001), Assistant Professor, Allied Health Partnerships, Clinical Laboratory Science. B.S. (1965), Southern Oregon University; B.S. (1968), University of Oregon. MT (ASCP), CLS (NCA) registered.

Abraham Furman (2001), Associate Professor, Allied Health Partnerships, Clinical Laboratory Science. B.S. (1970), San Diego State University; B.S. (1972), Loma Linda University; Ph.D. (1980), University of California, Los Angeles. MT (ASCP) registered.

Steven Goodstein (2001), Associate Professor, Allied Health Partnerships, Clinical Laboratory Science. B.A. (1966), San Jose State University; M.S. (1978), Portland State University. MT (ASCP) registered.

Veera Gude (2010), Assistant Professor, Civil Engineering. M.S. (2004), National University of Singapore, Ph.D. (2007), New Mexico State University.

James Heath III (2007), Assistant Professor, Dental Hygiene. B.S. Northern Arizona University, D.M.D (1974), Baylor College of Medicine.

Anne V. Hiller Clark (2001), Associate Professor, Instructional Services and Shaw Historical Library. B.S. (1985), College of William and Mary; M.S. (1990), University of Delaware; M.S.L.I.S. (2004), Drexel University.

Alishia Huntoon (2005), Associate Professor, Humanities and Social Sciences. B.S. (1999), University of Wisconsin, Stevens Point; M.S. (2002), Ph.D. (2005), Washington State University.

John Jackson (2010), Assistant Professor, Management. B.S. (1978), Baylor University, M.S. (1980), Texas A&M University.

Maria Lyn Kessler (2002), Professor, Humanities and Social Sciences. B.S. (1983), Northeastern University; M.S. (1989), Southern Illinois University, Carbondale; Ph.D. (1994), Florida State University.

Grant C. Kirby (2003), Associate Professor, Management. B.S. (1987), Oregon Institute of Technology; M.B.A. (1999), University of Oregon.

Bobbi Kowash (2010), Instructor, Natural Sciences. B.S. (1999), Oregon Institute of Technology.

Hui Yun Li (2006), Associate Professor, Natural Sciences. B.S. (1988), National Taiwan University; M.S. (1990), Michigan State University; Ph.D. (1994), University of Massachusetts, Amherst.

Roger V. Lindgren (1999), Professor, Civil Engineering. B.S. (1989), University of Alberta; Ph.D. (2005), Portland State University. Registered Professional Engineer, Alberta.

LeAnn Maupin (1997), Associate Professor, Medical Imaging Technology. B.S. (1992), Oregon Institute of Technology; M.Ed. (2001), University of Phoenix.

Julianne M. Murray (1987), Associate Professor, Communication. B.A. (1975), Stanford University; M.A. (1979), Reed College; Ph.D. (1992), University of Oregon.

Mary “Molly” R. O’Shaughnessy (1999), Professor, Natural Sciences. B.S. (1978), University of New Hampshire; D.V.M. (1992), The Ohio State University.

Lloyd Parratt (2010), Assistant Professor, Natural Sciences. B.S. (1972), University of Redlands, M.S. (1974), University of Wyoming.

Slobodan Petrovic (2009), Associate Professor, Electrical Engineering and Renewable Energy. B.S. (1979), University of Belgrade, Yugoslavia; Ph.D. (1984), Technical University of Dresden, Germany.

Lawrence W. Powers (1993), Professor, Natural Sciences. B.S. (1969), Wayne State University; M.A. (1971), University of Oregon; Ph.D. (1975), University of Texas, Austin.

Mary D. Prange (2005), Instructor, Dental Hygiene. A.A. (1976), Cerritos College.

Andrew Ray (2008), Assistant Professor, Research Associate, Natural Sciences. B.S. (1994), Purdue University; M.S. (1999), Northern Michigan University; Ph.D. (2005), Idaho State University.

Joseph Reid (2009), Assistant Professor, Mathematics. B.S. (2006), Western Oregon University; B.S. (2008), Oregon Institute of Technology; M.S. (2009), University of Washington.

Patrick Schaeffer (2009), Assistant Professor, Management. B.S. (1986), and M.S. (1994), San Jose State University.

Hong “Randy” Y. Shih (1984), Professor, Manufacturing and Mechanical Engineering and Technology. B.S. (1979), The Chung-Yuan University, Taiwan; M.S. (1984), University of Nebraska, Lincoln.

Svetla Stoilova (2008), Assistant Professor, Manufacturing and Mechanical Engineering and Technology. B.S. (1971), and Ph.D. (1986), Institute of Mechanical and Electrical Engineering, Bulgaria.

William J. Stuart (2004), Assistant Professor, Manufacturing and Mechanical Engineering and Technology. B.S. (1969), University of Nevada, Reno; M.S. (1972), University of Southampton, UK.

Zachary Sunitsch (2010), Instructor, Natural Sciences. B.S. (2009), University of Arizona – Honors College.

Ronald H. Swisher (1976), Professor, Natural Sciences. B.A. (1972), Pomona College; Ph.D. (1976), University of Oregon.

Richard Torres (2007), Associate Professor, Natural Science. B.S. (1982), Brigham Young University; M.S. (1989), California State University, Long Beach; Ph.D. (1996), Idaho State University, Pocatella.

Terri Torres (2008), Assistant Professor, Mathematics. B.S. (1981), Brigham Young University; M.S. (1994), Idaho State University.

Claudia Torres-Garibay (2009), Assistant Professor, Electrical Engineering and Renewable Energy. M.S. (2000), Chihuahua, Mexico; Ph.D. (2007), University of Texas, Austin.

Lawrence J. Wolf (1998), Professor, Manufacturing and Mechanical Engineering and Technology. A.A. (1959), Harris-Stowe State University; B.S.M.E. (1961), M.S.M.E. (1962), D.Sc. (1971), Washington University, St. Louis. Registered Professional Engineer, Oregon, Missouri; OIT President Emeritus (Designate); Distinguished Service Professor of the Oregon University System.

Gary L. Zimmerman (1995), Professor, Medical Imaging Technology. B.S. (1984), Oregon Institute of Technology; M.S. (1993), University of Wisconsin, Oshkosh; Registered Technologist (R), (MR), (CT), ARRT.

OIT Faculty Senate Presidents

1965-1966 Eugene A. Wellman
1966-1967 Max A. Saunders
1967-1968 Arthur A. LeCours
1968 George E. Miller
1968-1969 Dalhart R. Eklund
1971-1972 Dale W. King
1972-1973 Larsen S. Svanevik
1973-1974 Sherman A. Anderson
1974-1975 Thomas J. Connors
1975-1976 James J. Boyle
1976-1977 Joseph T. Riker
1977-1978 Robert C. DeRosier
1978-1979 Richard H. Zbinden
1979-1980 Gary E. Wehr
1980-1981 Keith L. Spickler
1981-1982 Earl D. Kurz
1982-1983 Charles V. Higbee
1983-1984 Charles V. Higbee
1984-1985 Edward Silling
1985-1986 Herbert H. Jolliff
1986-1987 Herbert H. Jolliff
1987-1988 Charles E. Harris
1988-1989 Ross S. Carroll
1989-1990 Pearl O. Juris
1990-1991 John V. Stee
1992-1993 James R. Etchison
1993-1994 Bradley D. Burda
1994-1995 Bradley D. Burda
1995-1996 Valerie J. Vance
1996-1997 Valerie J. Vance
1997-1998 David C. Warner
1998-1999 David C. Warner
1999-2000 Alberto Bello, Jr.
2000-2001 Mark Clark
2001-2002 Mark Clark
2002-2003 Timothy Thompson
2003-2004 Bradley D. Burda
2004-2005 Bradley D. Burda
2005-2006 Bradley D. Burda
2006-2007 Mark Neupert
2007-2008 Mark Neupert
2008-2009 Marla Miller
2009-2010 Debbie Caldwell
2010-2011 Matt Schnackenberg

Emeritus Faculty

Marshall Ager, B.S., Assistant Professor, Civil Engineering and Geomatics, 1977-2004.

Judy Bronkey, M.A., Associate Professor, Director, Ethnic and International Student Services, 1969-1995.

Ross Carroll, Ph.D., Professor of Communication, 1984-2003.

Thomas J. Connors, Ph.D., Professor and Vascular Technology Program Director, 1969-1999.

Harriet Cornachione, M.S., Professor, Civil Engineering, 1995-2010.

Michael Cornachione, M.S., Professor, Civil Engineering, 1992-2010.

Jesse Crabtree, Assistant Professor, Civil Engineering Technology, 1947-1976.

G. Gene Culver, B.S., Associate Professor, Associate Director, Geo-Heat Center, 1960-1995.

W.M. Douglass, M.Ed., Professor and Dean of Administration, 1954-1983.

David Dyrud, Ph.D., Professor of Communication, 1975-2003.

Jeanne Ford, R.N., Assistant Professor, Administrative Director, Student Health Service, 1964-1983.

Polly Francis, M.S., Professor, Mathematics, 1990-2009.

Charles C. Glover, B.S., Associate Professor, Diesel Power Technology, 1966-1990.

Harold E. Godfrey, Jr., B.S., Assistant Professor, Medical Imaging Technology, 1975-1997.

Charles E. Harris, M.S., Professor, Department of Extended Studies and Summer Session, 1976-1996.

Margaret Huntley, Professor, Management, 1975-2006.

Herbert H. Jolliff, M.S., Professor and Department Chair, Mathematics, 1968-1999.

Cecil R. Lake, M.Ed., Professor, Director of Planning and Research, 1949-1986.

John W. Lund, Ph.D., Professor, Civil Engineering, and Director, Geo-Heat Center, 1967-1999.

Richard M. Moore, Ph.D., Professor and Director, Portland Operations, 1972-1997.

Gary J. Naseth, Ph.D., Professor, Humanities and Social Sciences, 1975-2009.

JoAnne M. Ogborn, M.S., Professor, Director, Extended Studies and Summer Session, 1968-1996.

Ralph L. Pettit, M.S., Professor, Humanities and Social Sciences, 1969-1986.

Margaret E. Reid, M.S., Associate Professor, Nursing, 1981-1997.

Mata A. Rust, M.S., Professor, Communication Department, 1972-1999.

Joseph E. Sarsenski, Ph.D., Professor, Civil Engineering, 1998-2008.

Edward Silling, Ph.D., Professor, Communication Department, 1975-2003.

Donald R. Skudstad, Ph.D., Professor, Manufacturing and Mechanical Engineering and Technology, 1976-1996.

Pauline Stuedli, Assistant Professor, Dental Hygiene, 1977-1999.

Larsen S. Svanekv, Ph.D., Professor, Natural Sciences, 1966-1997.

David J. Vargas, M.S.C.E., Associate Professor, Civil Engineering Technology, 1985-1997.

David C. Warner, Ph.D., Professor, Natural Sciences, 1984-2002.

Gary E. Wehr, M.A., Professor, Department Chair, General Studies, 1969-1996.

Raevelle J. Zumbo, M.S., Assistant Professor, Communication, 1976-2008.

Emeritus Administration

Mary J. Bradford, M.S., Aquatics Director/Softball Coach, 1975-2004

Paula Cloud, Executive Secretary to the President, 1997-2008.

Joemae Cox, M.S., Distance Education, 1994-2010.

Nancy K. Cox, Executive Secretary to the President, 1961-1999.

Martha Anne Dow, Ph.D., President, 1992-2007.

Christian H. Eismann, Ph.D., Professor and Dean of Academic Affairs, 1986-1996.

Sharon Hanson, Media Services Coordinator, Information Technology, 1986-2009.

April C. Leifeste, A.A., Executive Secretary, Academic Affairs, 1972-2006

Paul Lienau, M.S., Professor and Director of the Geo-Heat Center, 1968-1997.

Beth Murphy, M.S., Assessment, 1990-2010.

Robert Thompson, B.S., Sports Information Director, Athletics, 1993-2007

Gary L. Willhide, M.S., Director, Public Affairs, 1988-2005

F
- Faculty, Instructional: 215
- Faculty Senate Presidents: 219
- Family Educational Rights and Privacy Act: 197
- Fees (see Tuition and Fees): 20
- Final Exams: 35
- Financial Aid Programs: 16
 - Application Procedures: 16
 - Budgets: 17
 - Consortium Agreement: 18
 - Grants: 17
 - Loan Funds: 17
- Priority Deadlines: 16
- Scholarships: 18
- Students with Disabilities: 18
- Work Study: 17
- Fitness/Recreation/Athletics: 198
- Food Service (see Campus Dining): 199
- Foreign Language Requirement: 13, 39
- Foundation, Oregon Tech: 209
- Fraternities: 206
- Freshman Admission: 13

G
- General Education Requirements: 38
- General Information: 4
- Geography, Course Descriptions: 165
- Geographic Information Systems (GIS): 69
 - Course Descriptions: 165
 - GIS Minor: 70
- Geo-Heat Center: 200
- Geology, Course Descriptions: 165
- Geomatics Department: 68
 - Course Descriptions: 166
 - Geographic Information Systems (GIS) Option: 69
- Surveying Option: 68
- Governance, Oregon University System: 211
- Grade Point Average: 34
- For Graduation: 36
- Grading System: 33
- Graduate Programs: 121
 - Assistantships: 122
- Graduation: 36
- General Requirements: 38
- Grade Point Requirement: 36
- Honors: 37
 - in Absentia: 37
- Grants (see Financial Aid): 17
- Green Belt (see Six Sigma Green Belt): 86

H
- Health Center: 204
- Health Insurance: 205
- Health Education: 114
- Course Descriptions: 167
- Health Informatics: 80
- Health Management (see Allied Health Management): 77
- Health Sciences: 110
 - Course Descriptions: 169
 - High School Course Requirements: 13
 - High School Senior Admission: 13
 - High School Transition Program (HST): 27
- History, Course Descriptions: 168
- History, OTT: 10
- Honors, Special Recognition: 33
- Honors, Standing: 37
- Housing and Residence Life: 203
- Humanities, Course Descriptions: 10
- Humanities and Social Sciences Department: 71
 - Course Descriptions (see, Anthropology, Art, Economics, English, Geography, History, Humanities, Music, Political Science, Philosophy, Psychology, Sociology, Spanish): 50
- Human Communication Minor: 68

I
- Incompletes: 34
- Information Technology Minor: 78
- Options: 85
 - Accounting: 78
 - Applications Development: 79
 - Business/Systems Analysis: 79
- Health Informatics: 80
 - Information Technology Services: 201
 - In Progress Grade: 205
 - Insurance, Student Health: 39
 - Intercultural Studies: 85
 - International Business Minor: 71
 - International Relations Minor: 15
 - International Student Admission: 198
 - Intramural Sports: 20

J
- Journalism, Course Descriptions: 169

K
- Klamath Community Television (KCTV): 201
- Klamath Falls Programs: 23

L
- La Grande (ODS School of Dental Hygiene): 23
- Learning Outcomes: 9
- Library Services: 201
- Fines: 21
- Loans (see Financial Aid): 17

M
- Management Department: 76
 - Allied Health Management: 77
 - Certificate in Accounting, Post-baccalaureate: 85
 - Degree Completion: 76
 - Distance Education: 76
 - Information Technology: 78
 - Options: 78
 - Applications Development: 79
 - Business/Systems Analysis: 79
 - Health Informatics: 80
 - Management: 81
 - Course Descriptions: 169
 - Options: 81
 - Accounting: 81
 - Entrepreneurship/Small Business: 82
 - Marketing: 82
 - Specializations: 84
 - Management and Technology: 84
 - Management Information Systems, Course Descriptions: 170
 - Minors: 84
 - Business: 84
 - Information Technology: 85
 - International Business: 85
 - Operations Management: 83
 - Renewable Energy Management Emphasis: 86
 - Six Sigma Green Belt Emphasis: 86
 - Manufacturing and Mechanical Engineering and Technology Department: 87
 - Manufacturing Engineering Technology: 87
 - Concurrent Degree: 89
 - Course Descriptions: 172
 - Mechanical Engineering: 89
 - Course Descriptions: 178
 - Mechanical Engineering Technology: 91
 - Course Descriptions: 180
 - Marketing: 82
 - Option: 82
 - Specialization: 85
 - Marketing and Communication: 202
- Master’s Degree: 93
 - Civil Engineering: 46
 - Manufacturing Engineering Technology: 87
 - Renewable Energy Engineering: 65
- Mathematics Department: 93
 - Applied Mathematics: 94
 - Course Descriptions: 176
 - Minor: 94
 - Mechanical Engineering: 89
 - Course Descriptions: 178
<table>
<thead>
<tr>
<th>Directory</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Media</td>
<td>207</td>
</tr>
<tr>
<td>Student Organizations</td>
<td>206</td>
</tr>
<tr>
<td>Student Records</td>
<td>121, 197</td>
</tr>
<tr>
<td>Student Responsibility</td>
<td>29</td>
</tr>
<tr>
<td>Student Senate</td>
<td>206</td>
</tr>
<tr>
<td>Student Services</td>
<td>197</td>
</tr>
<tr>
<td>Students with Disabilities, Services for</td>
<td>200</td>
</tr>
<tr>
<td>Summer Term</td>
<td>24</td>
</tr>
<tr>
<td>Substitution</td>
<td>37</td>
</tr>
<tr>
<td>Surveying (see Geomatics)</td>
<td>68</td>
</tr>
<tr>
<td>Suspension, Academic</td>
<td>30, 124</td>
</tr>
</tbody>
</table>

T
- Table of Contents: 3
- Tech Fit Center: 198
- Technical Communication Minor: 50
- Tech Opportunities Program: 205
- Transfer Admission Standards: 14
- Transfer Credits: 30
- Transfer Students: 14
- Transcript: 20, 197
- Other: 30
- Tuition and Fees: 20
- Admission Application: 20
- Differential Tuition in Health Programs: 20
- Health Center, Student: 205
- Late Fee: 20
- Library Fines and Charges: 21
- Matriculation: 20
- Other Academic Fees: 20
- Parking: 21
- Petition to Graduate: 20
- Refunds: 20
- Return of Check: 20
- Room and Board Costs: 20
- Rush Fee, transcripts: 20
- Senior Citizen Instruction: 21
- Special Course: 20
- Special Exam: 20

U
- Ultrasound (see Medical Imaging Technology, Diagnostic Medical Sonography): 97
 - Course Descriptions: 151
- University Development: 208

V
- Varsity Teams: 198
- Vascular Technology: 99
 - Course Descriptions: 195
- Veterans Progress Standards: 36, 209
- Veterans Services: 209

W
- Warning, Academic: 29
- Welcome Message: 5
- Western Undergraduate Exchange (WUE): 19
- Withdrawal: 33
- Work Study (see Financial Aid): 17
- Writing, Course Descriptions: 196

Y
- Youth Programs: 27