1. Sketch the graph: \(h(x) = x^2 \)

2. If \(g(x) = 3^x \), what is \(g(-2) \)?

 a) -9 b) -6 c) \(-\frac{1}{9}\) d) \(\frac{1}{9}\) e) 9
Calculus Quiz #2

1. Sketch the graph: \(f(x) = |x| \)

2. The equation of the line through the point \((6,0)\) with slope \(m = -\frac{1}{2}\) is

A) \(y = -\frac{1}{2}x + 6\)
B) \(y = \frac{1}{2}x + 6\)
C) \(y = 2x + 3\)
D) \(y = -2x + 6\)
E) \(y = -\frac{1}{2}x + 3\)
Calculus Quiz #3

1. Factor: $x^2 + 5x - 6$

2. Evaluate: $\frac{53^{2001}}{53^{2000}}$
1. For what value(s) of x is

$$f(x) = \frac{x - 4}{x - 3}$$

undefined?

2. Find the area of the trapezoid

![Trapezoid Diagram]

- 10 ft
- 14 ft
- 6 ft
1. For what values of t does $9t^2 - 30t + 64 = 0$?

2. Sketch the graph of a parabola that is not a function.
1. The domain of $f(x) = \sqrt{\frac{x}{x+1}}$ is

 A) $|x| \geq 0$
 B) $|x| \geq -1$

 C) $x < -1$ and $x > 0$

 D) $x \leq -1$ and $x \geq 0$

 E) $x < -1$ and $x \geq 0$

2. Sketch the fundamental cycle of $y = \cos 2x$.
1. The domain of the function
\[f(x) = \sqrt{1 + \sin x} \] is
A) \(x \neq \pi/2 \)
B) \(x \geq 0 \)
C) \(x > 0 \)
D) \(-1 \leq x \leq 1 \)
E) all reals

2. The line through the points \((-4, 7)\) and \((5, -2)\) will cross the x-axis at
A) \((-3,0)\)
B) \((3, 0)\)
C) \((-1,0)\)
D) \((1,0)\)
E) \((2,0)\)
1. Which of the following does NOT have a period of π?

A) $f(x) = \sin\left(\frac{x}{2}\right)$
B) $f(x) = |\sin x|$

C) $f(x) = \tan x$
D) $f(x) = \sin^2 x$

E) $f(x) = \tan^2 x$

2. What is 50 divided by $1/2$?
1. Let \(f(x) = \left| \sin x - \frac{1}{2} \right| \). The maximum value attained by \(f(x) \) is

A) \(\frac{1}{2} \) \quad B) 1 \quad C) \(\frac{3}{2} \)

D) 2 \quad E) 5

2. Sketch the graph of a decreasing exponential function.
1. Sketch the graph of a function with a jump discontinuity at \(x = 2 \).

2. If \(f(x) = x^3 + 3x^2 + 4x + 5 \) and \(g(x) = 5 \), then \(g(f(x)) = \)

A) \(5x^2 + 15x + 25 \)
B) \(5x^3 + 15x^2 + 20x + 25 \)
C) 1125
D) 225
E) 5
1. Sketch the graph of a function with a removable discontinuity at (2, 5).

2. Is $f(x) = \sin(x)$ increasing or decreasing at $x = 2$?
Calculus Quiz #12

1. Sketch the graph of a function where 3 is the limit as x approaches 2 but f(x) is undefined.

2. How far will you travel in 20 minutes at 30 mi/hr?
1. Sketch the graph of a function that is decreasing slowly when $x = -4$.

2. Factor: $x^2 - 100$
1. A particle moves along the x-axis so that at any time $t > 0$ its position is given by $x(t) = 48t - 3t^2$. What is the average velocity of the particle between $t = 0$ and $t = 2$?

A) 84
B) 42
C) 36
D) 24
E) 18

2. Sketch the graph of $y = (x - 2)^2 - 5$.
1. Sketch the graph of a function with a vertical asymptote at \(x = 2 \).

2. The RANGE of the function \(f(x) = 4 \sin(2x) +1 \) is

 A) \(\{-4 \leq y \leq 4\} \)
 B) \(\{|y+1| \leq 4\} \)
 C) \(\{0 \leq y \leq 4\} \)
 D) \(\{-5 \leq y \leq 3\} \)
 E) \(\{|y-1|\leq 4\} \)
1. What type of function has a graph like Figure 1?

2. Find: \(\lim_{x \to 3} 5x^2 \)
Calculus Quiz #17

1. Mark the interval in Figure 1 where the function is decreasing.

2. Find $\frac{dy}{dx}$ if $y = 3x^4$.

Figure 1
1. If \(y = \frac{3}{4 + x^2} \), then \(\frac{dy}{dx} = \)

A) \(\frac{-6x}{(4 + x^2)^2} \)
B) \(\frac{3x}{(4 + x^2)^2} \)
C) \(\frac{6x}{(4 + x^2)^2} \)
D) \(\frac{-3x}{(4 + x^2)^2} \)
E) \(\frac{3}{2x} \)

2. Evaluate: 5!
Calculus Quiz #19

1. If \(f(x) = x \), then \(f '(5) = \)

 A) 0
 B) \(\frac{1}{2} \)
 C) 1
 D) 5
 E) \(\frac{25}{2} \)

2. Sketch the graph of \(f(x) = \log(x-2) \)
Calculus Quiz #20

1. If \(f(x) = (x^2 - 1)(x^3 + 1) \), then \(f'(1) = \)

A) 10 B) 8 C) 6 D) 4 E) 2

2. If \(f(x) = \frac{x - 1}{x + 1} \), then \(f'(1) = \)

A) -1 B) \(\frac{-1}{2} \) C) 0 D) \(\frac{1}{2} \) E) 1
1. A particle moves along the x-axis so that its position is given by \(x(t) = t^3 - 3t^2 - 9t + 1 \). For what values of \(t \) is the particle at rest?

A) None B) 1 only C) 3 only D) 5 only E) 1 and 3

2. Sketch the graph of the derivative of the function.
1. An equation of the line tangent to the graph of \(f(x) = x(1-2x)^3 \) at the point \((1, -1)\) is

A) \(y = -7x + 6 \) B) \(y = -6x + 5 \)
C) \(y = -2x + 1 \) D) \(y = 2x - 3 \)
E) \(y = 7x - 8 \)

2. Find: \(\lim_{x \to 0} \frac{13x}{x} \)
Calculus Quiz #23

1. If \(x^2 + xy + y^3 = 0 \), then \(\frac{dy}{dx} = \)

A) \(-\frac{2x+y}{x+3y^2} \)
B) \(-\frac{x+3y^2}{2x+y} \)
C) \(\frac{-2x}{x+3y^2} \)
D) \(\frac{2x}{x+3y^2} \)
E) \(-\frac{2x+y}{x+3y^2-1} \)

2. If \(f(x) = \sqrt{2x} \), then \(f'(1) = \)

A) \(\frac{1}{4} \)
B) \(\frac{1}{2} \)
C) \(\frac{\sqrt{2}}{2} \)
D) \(1 \)
E) \(\sqrt{2} \)
Calculus Quiz #24

1. If \(f(x) = x^5 - 1 \), the inverse function of \(f \), is defined by \(f^{-1} = \)

 A) \(\frac{1}{\sqrt[5]{x+1}} \)
 B) \(\frac{1}{\sqrt[5]{x+1}} \)
 C) \(\frac{5}{\sqrt[5]{x-1}} \)
 D) \(\frac{5}{\sqrt[5]{x-1}} \)
 E) \(\frac{5}{\sqrt[5]{x+1}} \)

2. If \(x^2 - 3xy + y^2 = -1 \), then at the point \((1,1) \), \(\frac{dy}{dx} = \)

 A) 1
 B) -2
 C) -1
 D) 2
 E) nonexistent
1. Let \(f(x) = \frac{1}{k} \cos(kx) \). For what value of \(k \) does \(f \) have a period of 3?

A) \(\frac{2}{3} \)
B) \(\frac{2\pi}{3} \)
C) \(\frac{3\pi}{2} \)
D) 6
E) \(6\pi \)

2. The slope of the tangent line to the curve \(xy^3 + y^2x^2 = 6 \) at \((2, 1)\) is

A) \(\frac{3}{2} \)
B) -1
C) \(\frac{-5}{14} \)
D) \(\frac{-3}{14} \)
E) 0
Calculus Quiz #26

1. Let \(y = x^2 \cos(x) \). \(\frac{dy}{dx} = \)
 A) \(2x \sin(x) \)
 B) \(2x \cos(x) + x \sin(x) \)
 C) \(2x \cos(x) - x^2 \sin(x) \)
 D) \(2x \cos(x) + x^2 \sin(x) \)
 E) \(2x \cos(x) - x \sin(x) \)

2. If \(y = \frac{\sin(x)}{\cos(x)} \), then \(\frac{dy}{dx} = \)
 A) \(\sec^2(x) \)
 B) \(\frac{\cos(x)}{\sin(x)} \)
 C) \(\frac{\cos(x)}{-\sin(x)} \)
 D) \(\cot(x) \)
 E) \(\sec(x) \)
1. Let $y = \tan^2(3x)$. \(\frac{dy}{dx} =

A) 2\tan(3x) \\
B) 6\tan(3x) \\
C) 6\tan(3x)\sec^2(3x) \\
D) -6\tan(3x)\sec^2(3x) \\
E) 6\cot(x) \\

2. \(\lim_{h \to 0} \frac{\sin(\pi + h) - \sin(\pi)}{h} =

A) 0
B) -1
C) 1
D) 0.5
E) DNE
Calculus Quiz #28

1. If \(x + 7y = 29 \), is an equation of the line normal to the graph of \(f(x) \) at the point \((1, 4)\), then \(f'(x) = \)

A) \(7 \) B) \(\frac{1}{2} \) C) \(-\frac{1}{7} \) D) \(-\frac{7}{29} \)

E) \(-7\)

2. If \(y^2 - 2xy = 16 \), then \(\frac{dy}{dx} = \)

A) \(\frac{x}{y-x} \) B) \(\frac{y}{x-y} \) C) \(\frac{y}{y-x} \)

D) \(\frac{y}{2y-x} \) E) \(\frac{2y}{x-y} \)
Calculus Quiz #29

1. If $f(x) = x\sqrt{x}$, then $f'(1) =$

 A) $\frac{1}{2}$ B) $-\frac{1}{2}$ C) $\frac{3}{2}$ D) $-\frac{3}{2}$
 E) $\frac{2}{3}$

2. If the line $y = 3x - 5$ is tangent to the graph of $y = f(x)$ at the point $(4, 7)$

 then $\lim_{x \to 0} \frac{f(4+x) - f(4)}{x}$ is

 A) -5 B) 3 C) 4 D) 7 E) Nonexistent
Calculus Quiz #30

1. If f is a continuous function on [a, b], which of the following must be true?

 A) f ‘ exists on (a, b)
 B) If f(x₀) is a maximum of f, then f ’(x₀)=0
 C) lim_{x→0} f(x)=f(lim_{x→0}) for all x₀ in (a,b)
 D) f ‘(x) = 0 for some x in (a,b)
 E) the graph of f ‘(x) is a straight line.

2. The position of a particle moving along a straight line at any time t is given by s(t) = t² + 4t + 4. What is the acceleration of the particle when t= 4?

 A) 0 B) 2 C) 4 D) 8 E) 12
Calculus Quiz #31

1. If \(\frac{dy}{dx} = \cos(2x) \), then \(y = \)

A) \(-\frac{1}{2}\cos(2x) + C \)
B) \(-\frac{1}{2}\cos^2(2x) + C \)
C) \(\frac{1}{2}\sin(2x) + C \)
D) \(\frac{1}{2}\sin^2(2x) + C \)
E) \(-\frac{1}{2}\sin^2(2x) + C \)

2. The absolute maximum value of \(f(x) = x^3 - 3x^2 + 12 \) on the closed interval \([-2, 4]\) occurs when \(x = \)

A) 4
B) 2
C) 1
D) 0
E) -2
1. What is \(\lim_{x \to \infty} \frac{x^2-4}{2+x-4x^2} \) ?

A) -2 B) -\frac{1}{4} C) \frac{1}{2} D) 1 E) DNE

2. Find the value of \(c \) on the interval \([0,4]\) which satisfies the Mean value Theorem for \(y = \sqrt{x} \)

A) -2 B) 1 C) 2 D) \frac{1}{2} E) None
1. The sides of the rectangle increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$. At the instant that $x = 4$ and $y = 3$ what is the value of $\frac{dx}{dt}$?

A) $\frac{1}{3}$ B) 1 C) 2 D) $\sqrt{5}$ E) 5

2. A polynomial $p(x)$ has local maxima at (-2,4) and (5,7) and a local minimum at (1,1) and no other critical points. How many roots does $p(x)$ have?

A) 1 B) 2 C) 3 D) 4 E) 5
1. The graph of $f(x)$ is shown. Mark the intervals where
\[
\frac{dy}{dx} > 0 \text{ and } \frac{d^2y}{dx^2} < 0
\]

2. If $f(x) = x + \sin x$, then $f'(x) =$

A) $1 + \cos (x)$ B) $1 - \cos x$
C) $\cos x$ D) $\sin x - \cos x$
E) $\sin x + \cos x$
Calculus Quiz #35

1. \(\int_{0}^{1} |x-1| \, dx = \)

 A) 1 B) -1 C) -1/2
 D) 1/2 E) None of these

2. If \(F \) and \(f \) are continuous functions such that \(F'(x) = f(x) \) for all \(x \), then

 \[\int_{a}^{b} f(x) \, dx = \]

 A) \(F'(a) - F'(b) \) B) \(F'(b) - F'(a) \)
 C) \(F(a) - F(b) \) D) \(F(b) - F(a) \)
 E) None of the above
Calculus Quiz #36

1. \(\int_{-1}^{2} \frac{|x|}{x} \, dx = \)

 A) -3 B) 1 C) 2 D) 3 E) Nonexistent

2. For what non-negative value of \(b \) is the line given by \(y = -\frac{1}{3}x + b \) normal to the curve \(y = x^3 \).

 A) 0 B) 1 C) 4/3 D) 10/3 E) \(\frac{10\sqrt{3}}{3} \)
1. If $f(x) = x + \sin(x)$, then $f'(x) = $

A) $1 + \cos(x)$
B) $1 - \cos(x)$
C) $\cos(x)$
D) $\sin(x) - \cos(x)$
E) $\sin(x) + \cos(x)$

2. Which of the following equations has a graph that is symmetric with respect to the origin?

A) $y = \frac{x+1}{x}$
B) $y = -x^5 + 3x$
C) $y = x^4 - 2x^2 + 6$
D) $y = (x-1)^3 - 1$
E) $y = (x^2+1)^2 - 1$
1. $\int_0^3 (x + 1)^2 \, dx = \frac{1}{3}$
 A) $\frac{21}{2}$ B) 7 C) $\frac{16}{3}$ D) $\frac{14}{3}$ E) $-\frac{1}{4}$

2. If $\int_1^{10} f(x) \, dx = 4$ and $\int_1^3 f(x) \, dx = 7$,
 then $\int_1^3 f(x) \, dx = 5$
 A) -3 B) 0 C) 3 D) 10 E) 11
1. If \(f(x) = \frac{1}{3}x^3 - 4x^2 + 12x - 5 \) and the domain is the set of all \(x \) such that \(0 \leq x \leq 9 \), then the absolute minimum value of the function, \(f \) occurs when \(x \) is

A) 0 B) 2 C) 4 D) 6 E) 9

2. A polynomial \(p(x) \) has a relative maximum at (-2, 4), a relative minimum at (5, 7) and no other critical points. How many zeros does \(p(x) \) have?

A) One B) Two C) Three D) Four E) Five
Calculus Quiz #40

1. A curve in the plane is defined parametrically by the equations $x = t^3 + t$ and $y = t^4 + 2t^2$. An equation of the line at $t = 1$ is

A) $y = 2x$
B) $y = 8x$
C) $y = 2x - 1$
D) $y = 4x + 13$
E) $y = 8x + 13$

2. Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and $g(-2) = 5$ and $f'(5) = 1/2$, then $g'(-2)$ is

A) -2
B) 1/2
C) 1/5
D) -1/5
E) 2
1. \(\lim_{h \to 0} \frac{\int_{h}^{h+1} \sqrt{x^5 + 8}}{h} \) is

A) 0
B) 1
C) 3
D) \(2\sqrt{2}\)
E) Nonexistent

2. The graph of \(y = f(x)\) is shown above. How many points of inflection does the graph have?

A) One
B) Two
C) Three
D) Four
E) Five
Calculus Quiz #42

1. If f is a function such that
 \[\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 0, \]
 which of the following must be true?
 A) The limit $\lim_{x \to 2} f(x)$ does not exist.
 B) f is not defined at $x = 2$.
 C) The derivative of f at $x = 2$ is 0.
 D) f is continuous at $x = 0$.
 E) $f(2) = 0$

2. The average value of \sqrt{x} over the interval $[0, 2]$ is
 \[\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{2}, \frac{2\sqrt{2}}{3}, 1, \frac{4\sqrt{2}}{3} \]
 A) $\frac{\sqrt{2}}{3}$ B) $\frac{\sqrt{2}}{2}$ C) $\frac{2\sqrt{2}}{3}$
 D) 1 E) $\frac{4\sqrt{2}}{3}$
1. The function defined by \(f(x) = x^3 - 3x^2 \) for all real numbers \(x \) has a relative minimum at \(x = \)

A) -2 B) 0 C) 1 D) 2 E) 4

2. \(\int_{1}^{2} \frac{x^2 - 1}{x - 1} \, dx = \)

A) 1/2 B) 1 C) 2
D) 5/2 E) 3/2
Calculus Quiz #44

1. The region in the first quadrant bounded by the graph of \(y = \sec x \), \(x = \pi \), and the axes is rotated about the x-axis. What is the volume of the solid generated?

A) \(\frac{\pi^2}{4} \)
B) \(\pi - 1 \)
C) \(\pi \)
D) \(2\pi \)
E) \(\frac{8\pi}{3} \)

2. Suppose that \(f \) is an odd function; i.e. \(f(-x) = f(x) \). Which of the following must necessarily be equal to \(f'(x_0) \)?

A) \(f'(x_0) \)
B) \(-f'(x_0) \)
C) \(\frac{1}{f'(x_0)} \)
D) \(\frac{-1}{f'(x_0)} \)
E) None of these
1. \(\int_{0}^{1} x(x^2 + 2)^2 \, dx = \)

A) \(19/2\) B) \(19/3\) C) \(9/2\)
D) \(19/6\) E) \(1/6\)

2. \(\int_{1}^{4} |x-3| \, dx = \)

A) \(-3/2\) B) \(3/2\) C) \(5/2\)
D) \(9/2\) E) \(5\)
1. If the function f has a continuous derivative on $[0, c]$, then $\int_0^c f'(x) \, dx =$

 A) $f(x) - f(0)$
 B) $|f(c) - f(0)|$
 C) $f(c)$
 D) $f(x) + c$
 E) $f''(c) - f''(0)$

2. At $t = 0$ a particle starts at rest and moves along a line in such a way that at time t, its acceleration is $24t^2$ ft/sec2. How far in feet will the particle travel in the first 2 seconds?

 A) 32
 B) 48
 C) 64
 D) 96
 E) 192
Calculus Quiz #49

1. If the solutions of \(f(x) = 0 \) are -1 and 2, then the solutions of \(f(x/2) = 0 \) are

A) -1 and 2
B) -1/2 and 5/2
C) -1.5 and 1.5
D) -1/2 and 1
E) -2 and 4

2. For which of the following functions does the property \(\frac{d^3y}{dx^3} = \frac{dy}{dx} \) hold?

I. \(y = e^x \)
II. \(y = e^{-x} \)
III. \(y = \sin(x) \)

A) I only
B) II only
C) III only
D) I and II
E) II and III
Calculus Quiz #50

1. If $\frac{dt}{dt} = -2y$ and if $y = 1$ when $t = 0$, what is the value of t for which $y = 1/2$?

A) $-\frac{\ln2}{2}$ B) $-\frac{1}{4}$ C) $\ln2$

D) $\frac{\sqrt{2}}{2}$ E) $\frac{\ln2}{2}$

2. If $x = t^3 - t$ and $y = \sqrt{3t + 1}$, then $\frac{dy}{dx}$ at $t = 1$ is

A) $\frac{1}{8}$ B) $\frac{3}{8}$ C) $\frac{3}{4}$ D) $\frac{8}{3}$ E) 8
Calculus Quiz #51

1. \(\int_0^k (2kx - x^2) \, dx = 18 \), then \(k = \)

A) -9 B) -3 C) 3 D) 9 E) 18

2. If \(f(x) = x^2 \cos(x) \), then \(\frac{dy}{dx} \) is

A) \(2x \sin(x) \)
B) \(-2x \sin(x) \)
C) \(2x \cos(x) + x^2 \sin(x) \)
D) \(2x \cos(x) - x^2 \sin(x) \)
E) \(2x \cos(x) + 2x \sin(x) \)
Calculus Quiz #53

1. A velocity of a particle moving along a straight line at any time t is given by $v(t) = e^t$. How far does the particle travel from $t = 0$ to $t = 2$?

A) $e^2 - 1$ B) $e - 1$ C) $2e$ D) e^2

E) $\frac{e}{3}$

2. If $f(x) = \frac{\ln x}{x}$, then $\frac{dy}{dx} =$

A) $\frac{1}{x}$ B) $\frac{1}{x^2}$ C) $\frac{\ln x - 1}{x^2}$

D) $\frac{1 - \ln x}{x^2}$ E) $\frac{1 + \ln x}{x^2}$