Information Search and Visualization

• Who earns > $50,000 among the residents of Eugene, Oregon?

Stages of Action in Human-Computer Interaction
Introduction

- **Information activities:**
 - Information gathering
 - Knowing where to look and availability
 - Searching versus Browsing
 - A know-item-search versus making sense and discovering
 - Filtering
 - Information evaluation
 - Is this what I want?
 - Information analysis and interpretation
 - Summarizing information
 - Comparing information

- **Information activities are on-going, iterative tasks**
 - Interruption and resumption
 - Trace of the information gathering tasks
 - Archiving and annotating

Introduction

- **Problem:** Huge volumes of computer-stored data available:
 - Databases
 - Textual document libraries
 - Structured Relational Databases
 - contains relations and a schema to describe relations
 - relations have records
 - records have fields, and fields have values
 - set of items (10 to 100,000)
 - Multimedia document libraries
 - Contains images, sound, video, animations, etc
 - Digital archives are more loosely organized
 - Directories contain metadata
 - Websites
 - Contains network of websites with network of web pages
 - Gigantic information resource
 - Contents include text, sound, graphics, video, programs
 - Websites and Databases: Data mining
 - Data warehouses and data marts
 - Knowledge networks or semantic webs

Introduction

BUT searching and discovering is difficult:

- **Traditional interfaces have been difficult for novice users**
 - Command Languages
 - Complex commands
 - Boolean operators
 - Unwieldy concept
 - EXAMPLE: SQL query language to relational databases

- **Traditional interfaces have been inadequate for expert users**
 - Difficulty in repeating searches across multiple databases
 - Weak methods for discovering where to narrow broad searches
 - Poor integration with other tools
Introduction

• Solution: Developing more powerful search and visualization methods, integration of technology with task
 – Searching in Textual Documents and Database Querying
 • Form fill-in HTML instead of SQL query language
 • Customizable search options and displays using control panels
 • Natural language integration into text searching
 – Google uses statistical frequency of co-occurrence of words to determine meaning
 – Multimedia Document Searches
 • Pattern recognition for picture searching
 – Advanced Filtering and Search Interfaces
 – Designers are just learning how to present large amounts of data in orderly and user-controlled ways
 • "Information Visualization"

Searching in textual documents and database querying

• Traditional information finding resources
 – Finding aids
 • Table of contents, Indexes, Description introductions, Subject classification, Key-Word-In-Context (KWIC)
 – Preview and overview surrogates
 – Searching in structured relational database systems well established task using SQL command language
 – Users write queries that specify matches on attribute levels
 – Example of SQL command
 • SELECT DOCUMENT#
 • FROM JOURNAL-DB
 • WHERE (Date >= and Date<= 1998)
 • and (Language = English or French)
 • and (publisher = ASIST or HFES or ACM).
 – SQL has powerful features, but it requires 2 to 20 hours training
 – While SQL is a standard form fill-in queries have simplified query formulation
 – Finding a way not to overwhelm novice users is a challenge

Searching in textual documents and database querying

• New searching and querying interfaces
 – WWW search engines
 • Google, Yahoo, etc.
 • Natural language integration into text searching
 – Google uses statistical frequency of co-occurrence of words to determine meaning
 – World Wide Web search engines have greatly improved their performance by using statistical ranks and the information in the web’s hyperlink structure
 – WWW to Database interfaces
 • Form fill-in HTML instead of SQL query language
 • Customizable search options and displays using control panels
• Evidence shows that users perform better and have higher satisfaction when they can view and control the search
Searching in textual documents and database querying

• **Ethical problems**

Searching in textual documents and database querying

• **Searching & Querying User Interfaces: Basic tasks**
 - **Overview**
 - Gain an overview of the entire collection
 - Adjoining detail view
 - The overview might contain a movable field-of-view box to control the contents of the detail view
 - allowing zoom factors of 3 to 30
 - Fisheye view
 - **Zoom**
 - Zoom in on items of interest
 - Allows a more detailed view
 - Need to maintain context
 - Particularly important for small displays
 - **Filter**
 - Filter out uninteresting items
 - Allows user to reduce size of search

Searching in textual documents and database querying

• **User Interfaces: Basic tasks (cont.)**
 - **Details-on-Demand**
 - Select an item or group and get details when needed
 - Useful to pinpoint a good item
 - Usually click on an item and review details in a separate or pop-up window
 - **Relate**
 - View relationships among items
 - Use human perceptual ability—proximity, containment, connected line, color coding
 - Example: Set director’s name, and view all movies with that director
 - **History**
 - Keep a history to allow undo, replay, and progressive refinement
 - Allows a mistake to be undone, or a series of steps to be replayed
 - **Extract**
 - Extract the items or data
 - Save to file, print, or drag to another application
Searching in textual documents and database querying

• Example: ZFIN database
 – WWW Genetics database for zebrafish
 – Used by international research scientists
 – Developed at UO by S.Douglas (CS) and Monte Westerfield (Neuroscience Institute), 1994-2005

<http://zfin.org>
Search for gene "cox"
Search for mutant "cyclops"

Multimedia document searches

• Searches for databases and textual documents are good, but multimedia searches are in a primitive stage
• Current multimedia searches require descriptive documents or metadata searches
• Search by date, text captions, or media is possible
• Useful to have computers perform some filtering
• New systems will incorporate powerful annotation and indexing, with better search algorithms and browsing

Multimedia document searches

• Image Search:
 – Finding photos with images such as the Statue of Liberty is a challenge
 • Query-by-Image-Content (QBIC) is difficult
 • Search by profile (shape of lady), distinctive features (torch), colors (green copper)
 – Use simple drawing tools to build templates or profiles to search with
 – More success is attainable by searching restricted collections
 • Search a vase collection
 • Find a vase with a long neck by drawing a profile of it
 – Critical searches such as fingerprint matching requires a minimum of 20 distinct features
 – For small collections of personal photos effective browsing and lightweight annotation are important
Multimedia document searches

- **Map Search**
 - On-line maps are plentiful
 - Search by latitude/longitude is the structured-database solution
 - Today's maps allow utilizing structured aspects and multiple layers
 - City, state, and site searches
 - Flight information searches
 - Weather information searches
 - Example: www.mapquest.com
 - Mobile devices can allow "here" as a point of reference

- **Design/Diagram Searches**
 - Some computer-assisted design packages support search of designs
 - Allows searches of diagrams, blueprints, newspapers, etc.
 - E.g. search for a red circle in a blue square or a piston in an engine
 - Document-structure recognition for searching newspapers

- **Sound Search**
 - MIR supports audio input
 - Search for phone conversations may be possible in future on speaker independent basis

- **Video Search**
 - Provide an overview
 - Segmentation into scenes and frames
 - Support multiple search methods
 - Infomedia project

- **Animation Search**
 - Prevalence increased with the popularity of Flash
 - Possible to search for specific animations like a spinning globe
 - Search for moving text on a black background

Advanced filtering and search interfaces

For advanced uses there are alternatives to form fill-in query interfaces:

- Filtering with complex boolean queries
 - Problem with informal English, e.g. use of ‘and’ and ‘or’
 - Venn diagrams, decision tables, and metaphor of water flowing have not worked for complex queries

- Dynamic Queries - Adjusting sliders, buttons, etc and getting immediate feedback
 - "direct-manipulation" queries
 - Use sliders and other related controls to adjust the query
 - Get immediate (less than 100 msec) feedback with data
 - Dynamic HomeFinder and Blue Nile
 - Hard to update fast with large databases

- Query previews present an overview to give users information and the distribution of data and thereby eliminate undesired items

- Faceted metadata search
 - Integrates category browsing with keyword searching
 - Flameco
Interactive Graphics

Advanced filtering and search interfaces

• Collaborative Filtering
 – Groups of users combine evaluations to help in finding items in a large database
 – User “votes” and her/his info is used for rating the item of interest
 – E.g. a user rating sex restaurants highly is given a list of restaurants also rated highly by those who agree the six are good

• Multilingual searches
 – Current systems provide rudimentary translation searches
 – Prototypes of systems with specific dictionaries and more sophisticated translation

• Visual searches
 – Specialized visual representations of the possible values
 – E.g. dates on a calendar or seats on a plane
 – On a map the location may be more important than the name
 – Implicit initiation and immediate feedback

Information visualization

• Information visualization Definition
 – Use of interactive visual representations of abstract data to amplify cognition
 – Categorical variables and the discovery of patterns, trends, clusters, outliers, and gaps
 – Innovative ways of visualizing the data

• Compare to Scientific visualization
 – Continuous variables, volumes and surfaces
3D Histogram

Who earns > $50,000?

Tree Map Visualization

How a Tree Map Works

http://www.hivegroup.com/
Summary

Problem: Huge volumes of computer-stored data available
- Databases
 - Structured relational Databases
 - Multimedia document libraries
- Websites
 - Websites and Databases: Data mining

BUT searching and discovering is difficult:
- Traditional interfaces have been difficult for novice users
 - Command Languages
- Traditional interfaces have been inadequate for expert users
 - Difficulty in repeating searches across multiple databases
 - Weak methods for discovering where to narrow broad searches
 - Poor integration with other tools

Solution:
Developing more powerful search and visualization methods, integration of technology with task
- Searching in Textual Documents and Database Querying
- Multimedia Document Searches
- Advanced Filtering and Search Interfaces
- Designers are just learning how to present large amounts of data in orderly and user-controlled ways
 - "Information Visualization"