

Industry Sponsored Research in Advanced Manufacturing and Materials Processing

Mostafa Saber, Ph.D.

Associate Professor

Manufacturing and Mechanical Engineering and Technology

April 8, 2021

Advanced Manufacturing:

Project	Role	Funding Agency	Amount	Year Awarded	Status
Solid State Recycling of Thin Cross Section Metals	Principal Investigator	Oregon Best	\$75,000	2017	Completed
Ball Screw Rapid Forming	Principal Investigator	OMIC R&D	\$44,192	2018	Completed
Rapid Tooling with Additive Manufacturing	Principal Investigator	OMIC R&D	\$101,765	2018	Completed
Center of Excellence for Cutting Tools Inspection	Principal Investigator	Business Oregon	\$500,000	2018	Completed
Cutting Tool Geometry Inspection and Optimization	Principal Investigator	OMIC R&D	\$85,101	2019	Completed
Decision Tool for Additive Manufacturing Application	Co-Principal Investigator	OMIC R&D	\$54,596	2020	Ongoing

Advanced Materials Processing:

Project	Role	Funding Agency	Amount	Year Awarded	Status
Developments in Alloys with Multi-Principal Elements for Cutting Tools Applications	Principal Investigator	OMIC R&D	\$127,729	2020	Ongoing

Ball Screw Rapid Forming

- Multi-Step Manufacturing; Expensive approach while eliminating strength of the materials due to the hightemperature processes.
- Objectives:
 - To reduce the number of steps and use of specialized equipment in manufacturing of ball screws.

Ball Screw Rapid Forming

 To offer a new solution for rapid forming of a specific type of ball screws.

Rapid Tooling with Additive Manufacturing

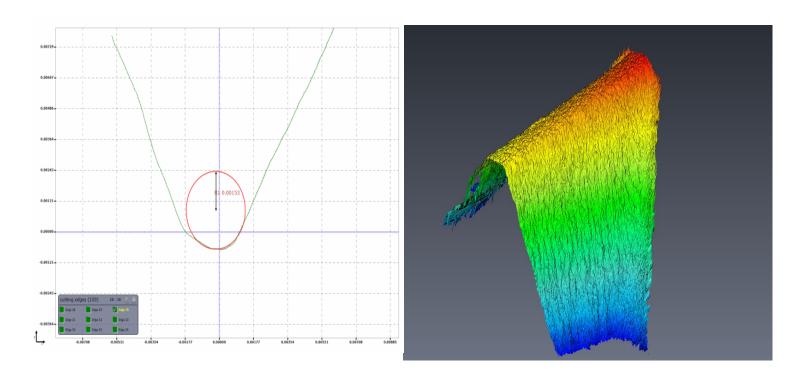
- Tool manufacturing is costly and time consuming due the nature of machining.
- Objectives:
 - To investigate the capability of additive manufacturing technologies available on the metal manufacturing market for rapid tooling.
 - To leverage the selected AM technology for an optimum design for AM.
 - To produce mold rather than many parts using AM.

Rapid Tooling with Additive Manufacturing

Rapid Tooling with Additive Manufacturing

Center of Excellence for Cutting Tools Inspection

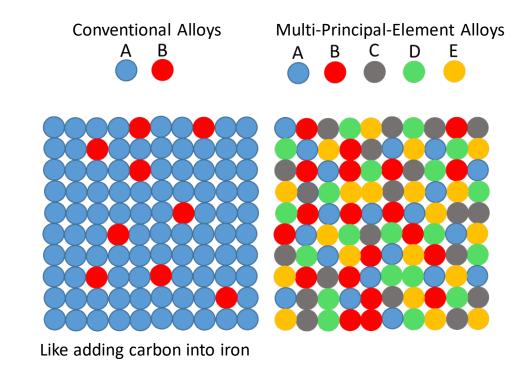
 Procurement of the most sophisticated cutting tools inspection equipment that industry is interested in testing.



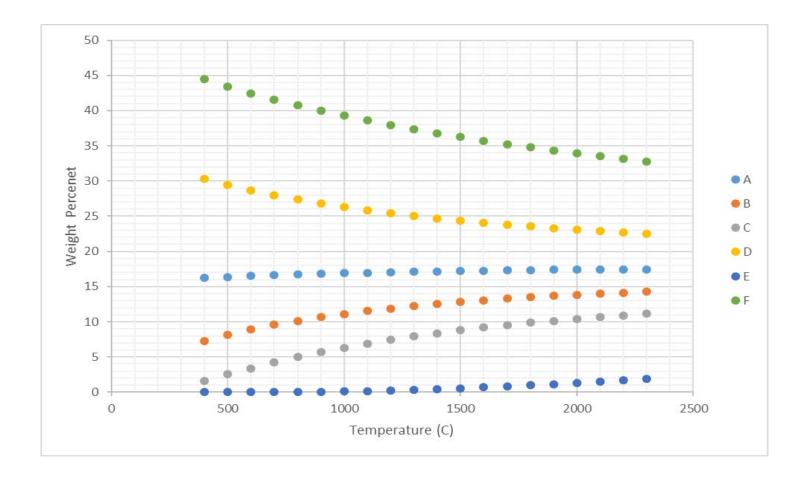
Cutting Tool Geometry Inspection and Optimization

- Tool life prediction before it is too late!
- Objectives:
 - To develop best practices in optimization of the edgepreparation of drilling tools while learning how to measure the cutting tool microgeometries.
 - To develop edge-preparation optimization methodology for a drilling tool.
 - To develop predictive model for tool life.

Decision Tool for Additive Manufacturing Application


 A team from both PSU and OIT will work together to match the desired project outcomes by developing a suite of software tools to improve awareness, understanding, and confidence of when to leverage additive manufacturing (AM) for manufacturing production support.

Developments in Alloys with Multi-Principal Elements for Cutting Tools Applications


- How to eliminate cobalt in cutting tools?
- Objectives:
 - To explore capabilities of advanced multicomponent alloys to find an alternative to conventional carbide and ceramic cutting tools.

Developments in Alloys with Multi-Principal Elements for Cutting Tools Applications

 In collaboration with OMIC industry partners, mechanical properties and microstructure of the porotypes will be tested and validated to evaluate the feasibility of the designed alloys for cutting tools applications.

Oregon TECH

Thank you

Oregon Tech
OMIC R&D
OMIC R&D Members
SPGA Office

Questions?